期刊文献+

场板结终端对金刚石SBD内部电场分布及击穿特性的影响 被引量:2

Influence of Field Plate Terminal on The Electric Field Distribution and Breakdown Characteristics of Diamond SBD
下载PDF
导出
摘要 建立了场板结终端对金刚石肖特基势垒二极管(SBD)的数值模拟模型,采用Silvaco软件中的器件仿真工具ATLAS模拟了场板长度L、绝缘层厚度TOX、衬底掺杂浓度NB、场板结构形状对器件内部电场分布以及击穿电压的影响,并对结果进行了物理分析和解释。结果表明:当TOX=0.4μm、NB=10^15cm^-3、L在0-0.2μm范围内时,击穿电压随着L的增加而增加;L〉0.2μm后,击穿电压开始下降。当L=0.2μm、NB=10^15cm^-3、TOX在0.1-0.4μm范围内时,击穿电压随着TOX的增加而增加;TOX〉0.4μm后,击穿电压开始下降。当L=0.2μm、TOX=0.4μm、NB=10^15cm^-3时,器件的击穿电压达到最大的1873 kV。与普通场板结构相比,采用台阶场板可以更加有效地提高器件的击穿电压。 Numerical simulation model of field plate termination diamond Schottky barrier diode( SBD) was established in this paper,the influence of the field plate length L,insulating layer thickness TOX,substrate doping concentration NB,and the structure shape of the field plate on the electric field distribution inside the device and the influence of breakdown voltage of diamond SBD were numerical simulated by Silvaco device simulation tools ATLAS. The results of numerical simulation were analyzed and explained physically. The breakdown voltage increases with the increasing length of the field plate within the range of 0. 0 to 0. 2 μm when TOX= 0. 4 μm and NB= 10^15cm^- 3,and decreases when L 〉0. 2 μm. The breakdown voltage increases with the increasing of insulating layer thickness TOXwithin the range of 0. 1 to 0. 4 μm when L = 0. 2 μm and NB= 10^15cm^- 3,and decreases when TOX 〉0. 4 μm. The breakdown voltage of the device reaches its maximum 1 873 kV when L = 0. 2 μm,TOX= 0. 4 μm,and NB= 10^15cm^- 3. The steps field plate can effectively improvethe breakdown voltage of the device,compared with the ordinary field plate structure.
出处 《发光学报》 EI CAS CSCD 北大核心 2016年第4期432-438,共7页 Chinese Journal of Luminescence
基金 2015年陕西省教育厅专项科研计划(15JK1096)资助项目
关键词 场板结终端 金刚石SBD 电场分布 击穿电压 field plate termination diamond Schottky barrier diode electric field distribution breakdown voltage
  • 相关文献

参考文献10

  • 1JAYANT BALIGA B. Fundamentals of Power Semiconductor Devices [ M]. New York: Springer, 2008:112-188. 被引量:1
  • 2CHOW T P, TYAGI R. Wide bandgap compound semiconductors for superior high-voltage unipolar power devices [ J ]. IEEE Trans. Electron. Dev. , 1994, 41 (8) :1481-1483. 被引量:1
  • 3NAWAWI A, TSENG K J, RUSLI G A J, et al.. Design and optimization of planar mesa termination for diamond Schottky barrier diodes [J]. Diam. Relat. Mater., 2013, 36:51-57. 被引量:1
  • 4BLANK V D, BORMASHOV V S, TARELKIN S A, et al.. Power high-voltage and fast response Sehottky barrier diamond diodes [J]. Diam. Relat. Mater. , 2015, 57:32-36. 被引量:1
  • 5FAGGIO G, MESSINA G, SANTANGELO S, et al.. Raman scattering in boron-doped single-crystal diamond used to fab- ricate Schottky diode detectors [J]. J. Qannt. Spectrosc. Radiat. Trans. , 2012, 113(18) :2476-2481. 被引量:1
  • 6MURET P, VOLPE P N, TRAN-THI T N, et al.. Schottky diode architectures on p-type diamond for fast switching, high forward current density and high breakdown field rectifiers [J]. Diam. Relat. Mater. , 2011, 20(3) :285-289. 被引量:1
  • 7ACHARD J, ISSAOUI R, TALLAIRE A, et al.. Freestanding CVD boron doped diamond single crystals: A substrate for vertical power electronic devices? [J]. Phys. Stat. Sol. (a), 2012, 209(9) :1651-1658. 被引量:1
  • 8UMEZAWA H, NAGASE M, KATO Y, et al.. Diamond vertical Schottky barrier diode with A1203 field plate [J]. Ma- ter. Sci. Forum, 2012, 717-720:1319-1321. 被引量:1
  • 9IKEDA K, UMEZAWA H, TATSUMI N, et al.. Fabrication of a field plate structure for diamond Schottky barrier diodes [ J ]. Diam. Relat. Mater. , 2009, 18 (2-3) :292-295. 被引量:1
  • 10KONE S, DING H, SCHNEIDER H, et al.. High performances CVD diamond Schottky barrier diode-Simulation and carrying out [ C]. Proceedings of The 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 2009:1-8. 被引量:1

同被引文献11

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部