期刊文献+

一种基于新隶属度函数的模糊支持向量机 被引量:16

A Fuzzy Support Vector Machine Based on New Membership Function
下载PDF
导出
摘要 传统的模糊支持向量机隶属度函数大多基于样本与类中心的距离设计,削弱了支持向量的作用。为此,结合2种隶属度函数,提出一种新的隶属度函数设计方法,将每一类样本划分为支持向量、非支持向量和孤立点。在赋予远离类中心的支持向量较大的隶属度同时,赋予远离类中心的非支持向量和孤立点较小的隶属度。实验结果表明,基于新隶属度函数的模糊支持向量机有更好的分类性能。 Membership functions of traditional Fuzzy Support Vector Machine (FSVM) are mostly designed based on the distance between the samples and the class centers, which decrease the effect of support vectors. This paper combines two membership functions and presents a new membership function to solve this problem. The new membership function divides the samples into three parts:support vectors,non-support vectors and outliers. It assigns large membership values to the support vectors which are far away from their class center. Small membership values are assigned to non-support vectors and outliers which are also far away from their class center. Experimental results show that the FSVM with the proposed membership function is more effective in classification.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第4期155-159,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61373055) 高等学校博士学科点专项科研基金资助项目(20130093110009)
关键词 支持向量机 模糊支持向量机 支持向量 隶属度函数 分类 孤立点 Support Vector Machine (SVM) Fuzzy Support Vector Machine ( FSVM ) support vector membership function classification isolated point
  • 相关文献

参考文献17

二级参考文献60

共引文献84

同被引文献135

引证文献16

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部