期刊文献+

Visually monitoring the etching process of gold nanoparticles by KI/12 at single-nanoparticle level using scattered-light dark-field microscopic imaging 被引量:4

Visually monitoring the etching process of gold nanoparticles by KI/12 at single-nanoparticle level using scattered-light dark-field microscopic imaging
原文传递
导出
摘要 Real-time monitoring of reaction processes is helpful for understanding the reaction mechanisms. In this study we investigated the etching mechanism of gold nanopartides (AuNPs) by iodine on a single-nanopartide level because AuNPs have become important nanoprobes with applications in sensing and bioimaging fields owing to their specific localized surface plasmon resonance (LSPR) properties. By using a scattered-light dark-field microscopic imaging (iDFM) technique, the in situ KI/I2-treated etching processes of various shapes of AuNPs, including nanospheres (AuNSs), nanorods (AuNRs), and nanotrigonal prisms (AuNTs), were monitored in real time. It was found that the scattered light of the different shapes of AuNPs exhibited noticeable color changes upon exposure to the etching solution. The scattering spectra during the etching process showed obvious blue-shifts with decreasing scattered intensity owing to the oxidation of Au atoms into [AuI2]-. Both finite-difference time-domain (FDTD) simulations and monitoring of morphological variations proved that the etching was a thermodynamic-dependent process through a chamfering mechanism coupled with layer-by-layer peeling, resulting in isotropic spheres with decreased particle sizes. Real-time monitoring of reaction processes is helpful for understanding the reaction mechanisms. In this study we investigated the etching mechanism of gold nanopartides (AuNPs) by iodine on a single-nanopartide level because AuNPs have become important nanoprobes with applications in sensing and bioimaging fields owing to their specific localized surface plasmon resonance (LSPR) properties. By using a scattered-light dark-field microscopic imaging (iDFM) technique, the in situ KI/I2-treated etching processes of various shapes of AuNPs, including nanospheres (AuNSs), nanorods (AuNRs), and nanotrigonal prisms (AuNTs), were monitored in real time. It was found that the scattered light of the different shapes of AuNPs exhibited noticeable color changes upon exposure to the etching solution. The scattering spectra during the etching process showed obvious blue-shifts with decreasing scattered intensity owing to the oxidation of Au atoms into [AuI2]-. Both finite-difference time-domain (FDTD) simulations and monitoring of morphological variations proved that the etching was a thermodynamic-dependent process through a chamfering mechanism coupled with layer-by-layer peeling, resulting in isotropic spheres with decreased particle sizes.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第4期1125-1134,共10页 纳米研究(英文版)
基金 This work was financially supported by the National Natural Science Foundation of China (NSFC, No. 21535006).
关键词 gold nanopartides dark-field imaging etching mechanism scattered light gold nanopartides,dark-field imaging,etching mechanism,scattered light
  • 相关文献

参考文献2

二级参考文献1

共引文献6

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部