摘要
运用广义最大元方法在非传递性偏好下给出了博弈均衡的存在性定理,推广了一些经典的博弈均衡存在性定理.在文中介绍策略式博弈的Nash均衡具有宽泛的条件,在微观经济理论中有广泛的应用.
The generalized-largest-element method was used to establish a Nash equilibrium existence theorem of the model without concrete payoff function or transitive preference, and Nash equilibrium existence of previous game models was generalized. A relaxed Nash equilibrium concept for strategic form games was introduced, which is widely used in micro-eco- nomic theory.
出处
《经济数学》
2016年第1期65-67,共3页
Journal of Quantitative Economics
基金
国家自然科学基金项目资助(61563020)
关键词
博弈
广义最大元
NASH均衡
game
generalized largest element
Nash equilibrium