期刊文献+

一个使用增广拉格朗日函数的改进的SQP算法

An Improvement SQP Algorithm by Using Augmented Lagrangian Function
原文传递
导出
摘要 通过引进一个辅助参数改变二次子规划的约束形式,使子问题总存在最优解.使用一个可微增广拉格朗日函数作为效益函数来确定步长,避免了Maratos效应. The subproblem always has optimnl solution with an auxiliary parameter being used to change the constraints' form of the quadratic subprogramming, We modify the search direction to avoid the Maratos effect by using an augmented Lagrangian function to determine the step length.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第17期105-111,共7页 Mathematics in Practice and Theory
基金 运城学院科研项目资助(2005209)
关键词 增广拉格朗日函数 效益函数 Maratos效应 augmented lagrangian function merit function maratos effect
  • 相关文献

参考文献8

  • 1Han S P.Superlinearly convergent variable metric algorithm for general nonlinear programming problems[J].Math Prog,1976,1 1:263-282. 被引量:1
  • 2Schittkowski K.The nonlinear programming method of Wilson.Han,and Powell with Augmented Lagrangian type line search function[J].Numerische Mathematik.1981,38:83-114. 被引量:1
  • 3Powell M J D.A Fast Algorithm for Nonlinearly Constrained Optimization Calculations[M].in Numerical Analysis,Proceedings.Biennial conference,Dundee 1977.Lecture Notes In Math.630.G.A.Waston.Ed,Springer-Verlag.Berlin.New York.1978.144-157. 被引量:1
  • 4Pantoja J F A.Mayne D Q.Exact penalty function algorithm with simple updating of the penalty parameter[J].J Optim Theory Appl.1991.69:441-467. 被引量:1
  • 5Chamberlain R M,Lemarechal C.Pedersen H C.Powell M J D.The watch-dog technique for forcing convergence in algorithms for constrained optimization[J].Math Programming Stud.1982.16:1-17. 被引量:1
  • 6Pillo G Di.Facchinei F.Grippo L.An RQP algorithm using a differentiable exact penalty function for inequality constraint problems[J].Math Prog.1992.55:49-68. 被引量:1
  • 7He G P.A new SQP algorithm using an augmented Lagrangian function[C].Doctoral dissertation chapter 3. 被引量:1
  • 8Tone K.Revisions of constraint approximations in the successive QP method for nonlinear programming problems[J].Math Prog.1983.26:144-152. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部