期刊文献+

基于张量投票和目标追踪的墙体裂缝检测算法研究 被引量:4

Research on Wall Crack Detection Based on Tensor Voting and Target Tracking
下载PDF
导出
摘要 针对墙体裂缝对比度低、受噪声干扰严重等特点,提出了一种基于张量投票和目标追踪的墙体裂缝检测算法。在对原始影像进行二值化的基础上,利用张量投票的聚类思想,突出线性区域目标的强度,然后在突出的线性目标上选取特征点,对特征点进行追踪得到裂缝的大致位置,再反投到原始影像上。实验结果表明,该算法能够正确检测出墙体裂缝信息,且检测率较高,具有一定的通用性。 Considering the low contrast and severe noise features of wall crack images,this paper proposes a crack detection algorithm based on tensor voting and target tracking.On the basis of image binarization,the idea of clustering with tensor voting is used to highlight the linear target of the image.Then feature points are chosen on the highlighted linear target,and locations of cracks on the image are obtained through feature points tracking.Finally,the concept of re-cast is utilized to capture the original information of cracks.Test results show that this algorithm can detect cracks correctly on wall images and has high detection rate along with some degree of universality.
出处 《大地测量与地球动力学》 CSCD 北大核心 2016年第4期334-337,共4页 Journal of Geodesy and Geodynamics
基金 现代城市测绘国家测绘地理信息局重点实验室开放基金(20131205WY)~~
关键词 墙体裂缝 张量投票 概率图细化 目标追踪 反投定位 wall crack tensor voting probability graph thinning target tracking anti-cast position
  • 相关文献

参考文献9

  • 1Tanaka N, Uematsu K. A Crack Detection Method in Road Surface Images Using Morphology[C]. IAPR Workshop on Machine Vision Applications, Makuhari,Chiba, 1998. 被引量:1
  • 2许薛军,张肖宁.基于数字图像的混凝土桥梁裂缝检测技术[J].湖南大学学报(自然科学版),2013,40(7):34-40. 被引量:42
  • 3Salman M, Mathavan S, Kamal K, et al. Pavement Crack Detection Using the Gabor Filter[C]. 16th International IEEE Annual Conference on Intelligent Transportation Sys- tems, Hague, 2013. 被引量:1
  • 4Oliveira H, Correia P L. Automatic Road Crack Detection and Characterization[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 155-168. 被引量:1
  • 5Guan H Y, Li J, Yu Y T, et al. Iterative Tensor Voting for Pavement Crack Extraction Using Mobile Laser Scan- ning Data[J]. IEEE Transactions on Geoscienee and Re mote Sensing, 2015, 53(3): 1 527-1 537. 被引量:1
  • 6郭树强,朱世松,王立群,王青竹,朱洪锦.基于张量投票法的超声波图像去噪[J].河南理工大学学报(自然科学版),2014,33(1):75-78. 被引量:2
  • 7Mordohai P, Medioni G. Tensor Voting: A Perceptual Or- ganization Approach to Computer Vision and Machine Learning[M]. Morgon and Claypool Publishers, 2006. 被引量:1
  • 8邹勤..低信噪比路面裂缝增强与提取方法研究[D].武汉大学,2012:
  • 9Abdelqader L, Abudayyeh O, Kelly M E. Analysis of Edge-Detection Techniques for Crack Identification in Bridges[J]. Journal o Computing in Civil Engineering, 2003,17(4): 255 263. 被引量:1

二级参考文献18

共引文献42

同被引文献16

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部