期刊文献+

利用天文观测图像对空间碎片目标进行自动识别与追踪 被引量:5

Automatic Detecting and Tracking Space Debris Objects Using Active Contours from Astronomical Images
原文传递
导出
摘要 提出了一种利用天文观测手段获取的CCD图像序列对空间碎片进行自动识别和追踪的方法。该方法采用计算机图像处理、图像识别与分析和计算机视觉等相关技术,自动识别出每幅CCD图像中的空间碎片以及背景恒星等空间目标,并定量计算其有关特征;然后根据空间碎片移动较快的特点,在CCD图像序列中结合基于Snake模型的主动轮廓追踪和特征相似性比较两种方法,对其中出现的空间碎片目标进行自动识别和追踪。实验结果显示,该方法能准确地对空间碎片目标进行自动识别和追踪。 We present an efficient and low-cost method for automatically detecting and tracking of the space debris objects from astronomical images, by using a combination of active contours and shape feature similarities. An object detection algorithm is firstly implemented following some image preproeessing steps, in order to locate all the major objects in each image. Next, an object tracking method based on Greedy Snake algorithm is proposed so that all the detected objects are able to be correctly tracked. Finally, the space debris in the image sequence is identified by applying a shape feature similarity matching operation. Experimental results are also illustrated to demonstrate the capabilities of the proposed method to per form correct space debris tracking.
作者 杨育彬 林珲
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第2期209-214,共6页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(60875011 60505008) 江苏省自然科学基金资助项目(BK2007520) 国家自然科学基金重点资助项目(60723003) 香港何鸿燊航天科技人才培训基金会资助项目
关键词 空间碎片 主动轮廓 目标追踪 天文观测 space debris active contour object tracking astronomical observation
  • 相关文献

参考文献10

二级参考文献24

  • 1骆剑承,周成虎,赵千钧,万庆.彩色扫描地图点状符号的自动识别[J].地球信息科学学报,1999,11(2):57-62. 被引量:4
  • 2江吉喜,项续康,范梅珠.青藏高原夏季中尺度强对流系统的时空分布[J].应用气象学报,1996,7(4):473-478. 被引量:54
  • 3Arnaud Y,Desbios M,Maizi J.Automatic Tacking and Characterization of African Convective Systems on Meteosat Pictures[J].Journal of Applied Meteorology,1992,31(5):443-453 被引量:1
  • 4Yang Yubin,Lin Hui,Guo Zhongyang,et al.Automatic Tracking and Characterization of Multiple Moving Clouds in Satellite Images[C]//Thissen W,Wieringa P,Pantic M,et al.Proceedings of IEEE Conference on System,Man and Cybernetics.Helsinki:IEEE Press,2004:3 088-3 093 被引量:1
  • 5Quinlan J R.C4.5:Programs for Machine Learning[M].San Mateo:Morgan Kaufmann Publishers,1993 被引量:1
  • 6Roberto C. Video Segmentation Based on Multiple Features for Interactive and Automatic Multimedia Application[D]. Trieste:University in Trieste, Italia, 1998 被引量:1
  • 7Hua Zhong, Liu Wenyin. Interactive Tracker: a Semi-Automatic Video Object Tracking and Segmentation System[C]. International Conference on Multimedia Expo, Tokyo, 2001 被引量:1
  • 8Yang Chunke, Shunichiro O. A New Gradient-Based Optical Flow Method and Its Application to Motion Segmentation[C]. 26th Annual Conference of the IEEE, Nagoya, Japan, 2000 被引量:1
  • 9Michael M C, Murat T, Ibrahim S. Simultaneous Motion Estimation and Segmentation [J]. IEEETrans on Image Processing, 1997(6):1326-1333 被引量:1
  • 10Moscheni F. Spatio-Temporal Segmentation and Object Tracking:an Application to Second Generation Video Coding[D]. Lausanne: Swiss Federal Institute of Technology, 1997 被引量:1

共引文献15

同被引文献47

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部