期刊文献+

基于动态规划的最优化医学超声图像边缘提取 被引量:4

Dynamic Programming Based Optimal Edge Detection Algorithms on B-Scan Ultrasound Images
下载PDF
导出
摘要 动态规划 (DP)是一种解决多阶段决策过程最优化的方法 .图像边缘提取时为了使系统输出具有最小的不确定性 ,考虑最优化判据是必要的 .动态规划算法用于图像的边缘检测主要是获得一个图像的最低能量代价阵的过程 ,而图像的边缘对应于最低代价阵中的终止点和起始点之间能量梯度降低最快的路径 ,由此可以由最低代价阵勾勒出需要的边缘 .对于质量较差的图像 ,可以先用梯度算子和一种 LUM滤波器相结合进行预滤波 .实验表明 ,基于该算法用于超声图像的边缘检测可获得全局最优的稳定的边缘线 。 The segmentation of biomedical objects from gray scale images has been extensively studied in recent years. This paper explored a novel dynamic programming (DP) based optimal edge detection technique in medical ultrasound images. Dynamic programming is an optimal approach in multiscale decision-making. In an image segmentation system, it is used to obtain global optimal contours with connectedness and closeness. The DP algorithms process the object image to get the least comulative cost matrix to tracking a global optimal boundary. Combining with low-upper-middle (LUM) nonlinear enhancement filter and Gaussian preprocessor, this method shows robustness on the noisy images boundary detection.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第7期970-974,共5页 Journal of Shanghai Jiaotong University
关键词 边缘检测 动态规划 边缘增强 图像分割 最优化算法 医学超声图像 边缘提取 edge detection dynamic programming ultrasound image edge enhance image segmentation
  • 相关文献

参考文献6

  • 1[1]Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. Proc Int J Computer Vision, 1987, 1(4): 321-331. 被引量:1
  • 2[2]Udupa J K, Smarasekera S, Barrett W A. Edge detection via dynamical programming [J]. SPIE Proc Medical Imaging, 1992, 1808: 33-39. 被引量:1
  • 3[3]Udupa J K. Multidimensional digital boundaries [J]. Graphical Models and Image Processing, 1994, 56(4): 311-323. 被引量:1
  • 4[4]Falco A X, Udupa J K, Smarasekera S, et al. User-steered image segmentation paradigms: Live wire and live lane [J]. Graphical Models and Image Processing, 1998, 60(4): 233-260. 被引量:1
  • 5[5]Liang Q, Wendlhag I, Wikstrand J, et al. A multiscale dynamic programming procedure for boundary detection in ultrasonic artery image [J]. IEEE Trans on Medical Imaging, 2000, 19(2): 127-142. 被引量:1
  • 6[6]Hardie R C, Boncelet C G. Gradient-based edge detection using nonlinear edge enhancing profilers [J]. IEEE Trans Image Processing, 1995, 4(11): 1572-1577. 被引量:1

同被引文献51

  • 1吴薇,邓秋霞,何曰光.基于免疫遗传算法的图像阈值分割[J].纺织高校基础科学学报,2004,17(2):160-163. 被引量:9
  • 2周建华,朱兴龙,周骥平.微小孔径尺寸精度图像检测算法的研究[J].现代机械,2004(4):14-15. 被引量:4
  • 3唐健,朱继红,孙增圻.基于智能优化策略的图像自动配准方法[J].清华大学学报(自然科学版),2004,44(9):1252-1255. 被引量:4
  • 4Li S Z.Markov Random Field Modeling in Computer Vision[M].[S.l.] :Springer,2009. 被引量:1
  • 5Geman S,Geman D.Stochastic Relaxation,Gibbs Distributions,and the Bayesian Restoration of Images[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1984,6(6):721-741. 被引量:1
  • 6Gath I,Geva A B.Unsupervised Optimal Fuzzy Clustering[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1989,11(7):773-781. 被引量:1
  • 7Pedrycz W.Fuzzy Sets in Pattern Recognition:Methodology and Methods[J].Pattern Recognition,1990,23(1/2):121-146. 被引量:1
  • 8Salzenstein F,Pieczynski W.Parameter Estimation in Hidden Fuzzy Markovian Fields and Image Segmentation[J].Graphics Models Processing,1997,59(4):205-220. 被引量:1
  • 9Salzenstein F,Collet C.Fuzzy Markov Random Fields Versus Chains for Multispectral Image Segmentation[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2006,28(11):1753-1767. 被引量:1
  • 10张子瑜.基于马尔科夫随机场图像恢复算法研究[D].南京:南京师范大学,2008. 被引量:2

引证文献4

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部