期刊文献+

基于模糊分类的MRF图像恢复方法 被引量:5

MRF Image Restoration Method Based on Fuzzy Classification
下载PDF
导出
摘要 运用马尔科夫随机场(MRF)进行图像处理时,对图像平滑区域与边缘区域所采用的处理方法不加区别,会导致大量冗余程序且运行时间过长。针对该问题,提出基于模糊分类的MRF图像恢复方法,根据图像子块内服从不同分布的像素统计特征,对图像子块进行模糊分类,在分类基础上应用MRF进行图像恢复。对退化的二值图像进行恢复实验,结果表明,与MRF方法相比,基于模糊分类的MRF方法能减少程序运行时间,改善去噪效果。 The processing of smooth region and edge region is identity using Markov Random Fields(MRF),which leads to a lot of redundancy program and too long operation time.Aiming at this problem,this paper presents MRF image restoration method based on fuzzy classification.Image subblock can be fuzzy classified according to its statistical characteristics obeying different distribution,the image can be restored by MRF.The blurred binary image is restored by this method and the experimental results show that comparing with the MRF method,the method based on fuzzy classification can reduce operation time and improve denoising effect.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第10期198-199,221,共3页 Computer Engineering
基金 陕西省教育厅自然科学专项基金资助项目(2010JK563)
关键词 马尔科夫随机场 图像恢复 模糊分类 最大后验估计 先验概率 Markov Random Fields(MRF) image restoration fuzzy classification maximum a posteriori estimation prior probability
  • 相关文献

参考文献10

  • 1李斌,严加勇,庄天戈.基于动态规划的最优化医学超声图像边缘提取[J].上海交通大学学报,2002,36(7):970-974. 被引量:4
  • 2Geman S,Geman D.Stochastic Relaxation,Gibbs Distributions,and the Bayesian Restoration of Images[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1984,6(6):721-741. 被引量:1
  • 3Gath I,Geva A B.Unsupervised Optimal Fuzzy Clustering[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1989,11(7):773-781. 被引量:1
  • 4Pedrycz W.Fuzzy Sets in Pattern Recognition:Methodology and Methods[J].Pattern Recognition,1990,23(1/2):121-146. 被引量:1
  • 5Salzenstein F,Pieczynski W.Parameter Estimation in Hidden Fuzzy Markovian Fields and Image Segmentation[J].Graphics Models Processing,1997,59(4):205-220. 被引量:1
  • 6Salzenstein F,Collet C.Fuzzy Markov Random Fields Versus Chains for Multispectral Image Segmentation[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2006,28(11):1753-1767. 被引量:1
  • 7杨纶标,高英仪编著..模糊数学原理及应用[M].广州:华南理工大学出版社,2006:256.
  • 8白亮,曹付元,梁吉业.基于新的相异度量的模糊K-Modes聚类算法[J].计算机工程,2009,35(16):192-194. 被引量:5
  • 9张子瑜.基于马尔科夫随机场图像恢复算法研究[D].南京:南京师范大学,2008. 被引量:2
  • 10Li S Z.Markov Random Field Modeling in Computer Vision[M].[S.l.] :Springer,2009. 被引量:1

二级参考文献10

  • 1Han Jiawei, Kamber M. Data Mining Concepts and Techniques[M]. San Francisco, USA: Morgan Kaufmann, 2001. 被引量:1
  • 2Huang Zhexue. Extensions to the K-Means Algorithm for Clustering Large Data Sets with Categorical Values[J]. Data Mining and Knowledge Discovery, 1998, 2(3): 283-304. 被引量:1
  • 3Huang Zhexue, Ng M K. A Fuzzy K-Modes Algorithm for Clustering Categorical Data[J]. IEEE Transactions on Fuzzy Systems, 1999, 7(4): 446-452. 被引量:1
  • 4Michael K N, Mark J L, Joshua Z H, et al. On the Impact of Dissimilarity Measure in K-Modes Clustering Algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 503-507. 被引量:1
  • 5[1]Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. Proc Int J Computer Vision, 1987, 1(4): 321-331. 被引量:1
  • 6[2]Udupa J K, Smarasekera S, Barrett W A. Edge detection via dynamical programming [J]. SPIE Proc Medical Imaging, 1992, 1808: 33-39. 被引量:1
  • 7[3]Udupa J K. Multidimensional digital boundaries [J]. Graphical Models and Image Processing, 1994, 56(4): 311-323. 被引量:1
  • 8[4]Falco A X, Udupa J K, Smarasekera S, et al. User-steered image segmentation paradigms: Live wire and live lane [J]. Graphical Models and Image Processing, 1998, 60(4): 233-260. 被引量:1
  • 9[5]Liang Q, Wendlhag I, Wikstrand J, et al. A multiscale dynamic programming procedure for boundary detection in ultrasonic artery image [J]. IEEE Trans on Medical Imaging, 2000, 19(2): 127-142. 被引量:1
  • 10[6]Hardie R C, Boncelet C G. Gradient-based edge detection using nonlinear edge enhancing profilers [J]. IEEE Trans Image Processing, 1995, 4(11): 1572-1577. 被引量:1

共引文献6

同被引文献35

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部