期刊文献+

云环境下基于多目标决策的待整合服务器选择方法研究 被引量:4

Method of Selecting Consolidating Server in Cland Environment Based on Multi-objective Decision
下载PDF
导出
摘要 虚拟化与云计算技术的结合,帮助云计算供应商构建了更便捷、可靠以及规模更大的新型数据中心.但当服务器数量不断增加时,一些服务器可能会出现低负载的情况,会对资源及能耗造成大量浪费.服务器整合方法可以将多台虚拟机整合到同一台服务器上,关闭空闲的服务器,达到节能目的.但是传统方法选择待整合服务器时,仅将服务器的状态作为选择依据,未考虑部署在上面的虚拟机或者服务的状态.在传统方法的基础上,在选择待整合服务器时考虑了多个关键因素,如虚拟机状态、服务器资源占用率、服务性能等.利用多目标决策的方法选择出最需要整合的服务器,保证整合过程中的总能源消耗及迁移代价最小,并通过实验验证了本文提出方法的合理性和可行性. It helps cloud suppliers structure more convenient,stably and large-scale data center because of combining virtualization and cloud computing.When adding numbers of servers,some servers can appear lowload.It wastes larger resources.The method of consolidating servers is that many VM s are concentrated on a server,other empty servers are closed.The method can reduce resources.When traditional methods select servers,the lever of servers is as standards.Its veracity is low.This paper proposes that selecting consolidating servers needs to think about many key factors,for example the condition of VM,resource utilization rate of servers,service performance and so on.Using multi-objective method selects appropriate server.It can make resources consume and migration cost lowest.Experimental results showthe feasibility and effectiveness of the method.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第4期699-704,共6页 Journal of Chinese Computer Systems
基金 中央高校基本科研业务费专项资金项目(N120804001 N120204003)资助 国家自然科学基金项目(61300019)资助
关键词 服务器整合 节能 多目标决策 云计算 server consolidation energy conservation multi-objective decision cloud computing
  • 相关文献

参考文献5

二级参考文献87

  • 1郭成城,晏蒲柳.一种异构Web服务器集群动态负载均衡算法[J].计算机学报,2005,28(2):179-184. 被引量:72
  • 2石绥祥,夏登文,于戈.多层Client/Server结构软件性能评价[J].小型微型计算机系统,2006,27(3):486-488. 被引量:3
  • 3伍之昂,罗军舟,宋爱波.基于QoS的网格资源管理[J].软件学报,2006,17(11):2264-2276. 被引量:21
  • 4Wu Yong-wei, Hwang Kai, Yuan Yu-lai, et al.. Adaptive workload prediction of grid performance in confidence windows[J]. IEEE Transactions on Parallel and Distributed Systems, 2010, 21(7): 925-938. 被引量:1
  • 5Gmach D, Rolia J, Cherkasova L, et al.. Workload analysi: and demand prediction of enterprise data cente: applications[C]. Proceedings of the 2007 IEEE 10tl International Symposium on Workload Characterization Washington, 2007: 171-180. 被引量:1
  • 6Ganapathi A, Chen Y, Fox workload modeling for the Workshop on Self-Managing 2010), California, 2010:87 92. A, et al. cloud[C]. Statistics-driven Proceedings of Systems (SMDB. 被引量:1
  • 7Khan A, Yah Xi-feng, Tao Shu, et al.. Workload characterization and prediction in the cloud: a multiple time series approach[C]. Proceedings of 3rd International Workshop on Cloud Management (CloudMan 2012), HAWAII. 2012: 1287-1294. 被引量:1
  • 8Roy N, Dubey A, and Gokhale A. Efficient autoscaling in the cloud using predictive models for workload forecasting[C1. Proceedings of the 2011 IEEE 4th International Conference on Cloud Computing (CLOUD'll), Washington, 2011:500 507. 被引量:1
  • 9Xu Jing and Fortes J A B. Multi-objective virtual machine placement in virtualized data center environments[C]. Proceedings of the 2010 IEEE/ACM International Conference on Green Computing and Communications & International Conference on Cyber, Physical and Social Computing (GREENCOM-CPSCOM'10), Washington, 2010: 179-188. 被引量:1
  • 10Wang Meng, Meng Xiao-qiao, and Zhang Li. Consolidating virtual machines with dynamic bandwidth demand in data centers[C]. Proceedings of the 30th IEEE International Conference on Computer Communications (INFOCOM 2011), Shanghai, 2010:2"1 75. 被引量:1

共引文献73

同被引文献38

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部