期刊文献+

基于旋转矩阵KF的低成本MEMS姿态解算 被引量:3

Attitude Estimation Algorithm for Low Cost MEMS Based on Rotation Matrix Kalman Filter
下载PDF
导出
摘要 针对低成本MEMS器件组合的姿态检测系统在运动加速度干扰下姿态估计精度较差等问题,提出了一种基于旋转矩阵卡尔曼滤波器(KF)的姿态解算方法。为了克服四元数法观测方程为非线性的缺点,该方法以旋转矩阵部分元素建立状态方程,并对量测加速度采用状态反馈估计的运动加速度进行补偿,减小了外部加速度的干扰,然后通过构造水平观测向量降低了计算复杂度,并给出了量测噪声协方差的推导。最后设计了卡尔曼滤波器对量测信息实现融合。动静态测试表明,该方法消除了累计误差,与无迹卡尔曼滤波(UKF)相比,提高了在运动加速度干扰下的姿态估计精度。 In order to solve the problem of external acceleration interference from attitude measurement system with low cost MEMS sensors,an attitude estimate algorithm based on rotation matrix Kalman filter is proposed.The algorithm uses the rotation matrix elements as description to overcome the shortcoming of nonlinear measurement equation,and the measurement acceleration is compensated by using state feedback estimated external acceleration,then the observation vector is structured to reduce computation complexity and system noise covariance is deduced.Lastly,a Kalman filter is used to achieve the multi-sensor information fusion.Experiments prove that the algorithm can improve the estimation precision compared with unscented Kalman algorithm and eliminate the accumulated error.
出处 《测控技术》 CSCD 2016年第2期52-57,共6页 Measurement & Control Technology
关键词 姿态估计 卡尔曼滤波 非线性 运动加速度 构造向量 attitude estimate Kalman filter nonlinear external acceleration construct vector
  • 相关文献

参考文献9

二级参考文献36

  • 1徐玉,李平,韩波.一种面向机动的低成本姿态测量系统[J].传感技术学报,2007,20(10):2272-2275. 被引量:20
  • 2高钟毓,牛小骥,郭美凤.Quaternion-Based Kalman Filter for Micro-machined Strapdown Attitude Heading Reference System[J].Chinese Journal of Aeronautics,2002,15(3):171-175. 被引量:18
  • 3姜强,曾勇,刘强,荆华,周泽波.四旋翼飞行器姿态航向参考系统设计与实现[J].控制工程,2013,20(S1):167-169. 被引量:17
  • 4Zhu Rong, Sun Dong, Zhou Zhaoying, et al. A linear fusion al gorithm for attitude determination using low cost MEMS-based sensors[J]. Measurement, 2007, 40(3) :322 - 328. 被引量:1
  • 5Wang Mei, Yang Yunchun, Ronald R H, et al. Adaptive filter for a miniature MEMS based attitude and heading reference system[C]. Record- IEEE PLANS, Position, Location and Navigation Symposium, Piscataway, N J, IEEE, 2004:193 - 200. 被引量:1
  • 6Zhou Hongren, Kumar K S P. A current statistical model and adaptive algorithm for estimating maneuvering targets [J ]. AIAA, Journal of Guidance, Control and Dynamics, 1984, 7 (5) :596 - 602. 被引量:1
  • 7Farrell J A, Barth M. The global positioning system and inertial navigation[M]. McGraw-Hill, 1999: 199-202. 被引量:1
  • 8Yon Xiaoping,Eric R. Bachmann. Design, Implementation,and Ex- perimental Results of a Quatenlion-Based Kalman Filter for Human Body Motion Tracking[ J]. IEEE Transcatlon on Robotics,2006,22 (6) :317-332. 被引量:1
  • 9Benot Huyghe,Jan Doutreloignc and Jan Vanfleteren. 3D Orientation Tracking Based on Unscented Kalman Filtering of Accelerometer and Magnetometer Data [ C ]. IEEE Sensors Application Symposium, LA : IEEE Press ,2009:148-152. 被引量:1
  • 10Anthony Kim, Golnaraghi M F. A Quatemion-Based Orientation Estimation Algorithm Using an Inertial Measurement Unit [ C ]. IEEE Position Location and Navigation Symposium, Plans: IEEE Press, 2004:268 -272. 被引量:1

共引文献89

同被引文献23

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部