期刊文献+

倾斜相移闭合干涉图的非迭代相位提取方法(英文) 被引量:2

Non-Iterative Phase Extraction from Closed Interferograms with Tilt Shifts
下载PDF
导出
摘要 针对带倾斜相移误差的闭合干涉图,提出一种非迭代的高精度相位提取方法.该方法用傅里叶变换估计闭合条纹的相位,并用图像分割校正相位的符号,然后利用Zernike多项式拟合确定倾斜相移量,最后用最小二乘拟合得到高精度相位.数值模拟结果表明:该方法的相位提取误差随着干涉图中条纹根数的增多而减小;当干涉图中条纹根数为4.5时,倾斜相移的估计误差为0.37%.实验结果表明该方法的残余误差均方根值为0.121 7rad.该方法精度高,且无需迭代计算,可应用于相移干涉测量. A non-iterative method was proposed to extract the phase from closed interferograms with tiltshift errors.The proposed method estimates the phase of closed interferogram by Fourier transform,corrects the sign ambiguity of phase by image segmentation,and determines the tilt-shift plane by Zernike polynomials fitting.Finally the phase is extracted accurately by least square fitting.Simulation result shows that the residual phase error of the proposed method decreases with the increasing of the number of fringes in interferograms.When the closed interferograms have 4.5fringes,the average estimation error of tilt shift is 0.37%.Experimental result shows that the root mean square of the residual phase error is only 0.121 7rad.The proposed method is accurate and non-iterative,can be used in phase shifting interferometry.
出处 《光子学报》 EI CAS CSCD 北大核心 2016年第2期1-6,共6页 Acta Photonica Sinica
基金 The National Natural Science Foundation of China(No.61205163) Marie Curie International Incoming Fellowships(No.301807)by the Research Executive Agency of the European Commission
关键词 相移干涉测量 条纹分析 傅里叶变换 闭合干涉图 倾斜相移误差 Phase shifting interferometry Fringe pattern analysis Fourier transform method Closed interferogram Tilt-shift error
  • 相关文献

参考文献15

  • 1LIU F, WU Y, WU F. Phase shifting interferometry from two normalized interferograms with random tilt phase-shift[J]. Optics Express, 2015, 23(15):19932-19946. 被引量:1
  • 2XU J, JIN W, CHAI L, et al. Phase extraction from randomly phase-shifted interferograms by combining principal component analysis and least squares method[J]. Optics Express, 2011, 19(21):20483-20492. 被引量:1
  • 3GOLDBER K A, BOKOR J. Fourier-transform method of phase-shift determination[J]. Applied Optics, 2001, 40(17):2886-2894. 被引量:1
  • 4WANG Z, HAN B. Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms[J]. Optics Letters, 2004, 29(14):1671-1673. 被引量:1
  • 5CHEN M, GUO H, WEI C. Algorithm immune to tilt phase-shifting error for phase-shifting interferometers[J]. Applied Optics, 2000, 39(32):3894-3898. 被引量:1
  • 6DOBROIU A, APOSTOL A, NASCOV V,et al. Tilt-compensating algorithm for phase-shift Interferometry[J]. Applied Optics, 2002, 41(13):2435-2439. 被引量:1
  • 7XU J, XU Q, CHAI L. Iterative algorithm for phase extraction from interferograms with random and spatially nonuniform phase shifts[J]. Applied Optics, 2008, 47(3):480-485. 被引量:1
  • 8PATORSKI K, STYK A, BRUNO L, et al. Tilt-shift error detection in phase-shifting interferometry[J]. Optics Express, 2006, 14(12):5232-5249. 被引量:1
  • 9SOLOVIEV O, VDOVIN G. Phase extraction from three and more interferograms registered with different unknown wavefront tilts[J].Optics Express, 2005, 13(10):3743-3753. 被引量:1
  • 10ZENG F, TAN Q, GU H, et al. Phase extraction from interferograms with unknown tilt phase shifts based on a regularized optical flow method[J]. Optics Express, 2013, 21(14):17234-17248. 被引量:1

二级参考文献20

共引文献14

同被引文献6

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部