期刊文献+

基于空间直线预标定检测光学元件面形的研究 被引量:3

Surface Measurement of Optical Element Based on the Pre-Calibrating Camera
原文传递
导出
摘要 基于斜率检测的相位偏折术能够快速、简单、准确地测量光学元件面形和透射光学元件畸变波前。借助点光源显微测量系统对参考点坐标的准确测量提出了空间直线预标定的方法,利用它得到了相机中CCD面阵上每个像素对应每条光线的方向向量,通过每条光线的方向向量和被测面方程,追迹得到了被测面的世界坐标,从而求出被测面上各点斜率,采用波前重建算法,实现了光学元件面形的准确重建。实验结果显示,拟合面形去掉Zernike多项式前4项的RMS数据与干涉仪的测量结果最大相差仅约10nm,并且实验中重建的面形与利用张正友提出的标定方法坐标计算重建的面形几乎相同。因此,空间直线预标定法切实可行,可以实现高精度的反射光学元件面形测量,且测量系统简单,具有应用价值。 The phase measurement deflectometry based on slope detection can be used to quickly, simply and accurately measure the distorted wavefront of optical components. In this paper, the method of pre-calibrating space line is put forward by means of a point-source microscopic measurement system. The direction vector which is determined by the correction of each pixel on CCD plane array and the pinhole in front of the camera is obtained by using this method. The world coordinates of the measured suface is calculated by using each of the light directions and the slope can be obtained eventually. With the algorithm of wavefront reconstruction, the shape of optical component surface can be reconstructed exactly. The experimen- tal result shows that the maximum RMS difference between the fitting surface and the interferometer measurement result is only 10 nm when the first 4 items of the Zernike polynomials is removed. Also, the experimental result is almost the same as the reconstruction result by using the calibration method proposed by Zhang Zhengyou. Therefore, the method proposed in this paper is feasible and it can achieve the high-accuracy measurement on surface of reflecting optics . Furthermore, the measurement system is simple and has high value in practice.
出处 《光学与光电技术》 2016年第3期42-48,共7页 Optics & Optoelectronic Technology
基金 国家高技术研究发展计划(863计划)(2015AA015902)资助项目
关键词 光学检测 斜率 偏折术 空间直线法 预标定 optical measurement slope deflection spatial straight line method pre calibration
  • 相关文献

参考文献21

  • 1潘君骅著..光学非球面的设计、加工与检验[M].苏州:苏州大学出版社,2004:201.
  • 2王小鹏,朱日宏,王雷,许荣国.数字刀口仪定量检验非球面光学元件面形[J].光学学报,2011,31(1):140-143. 被引量:11
  • 3O Kafri,A Livnat. Reflective surface analysis using moiré deflectometry[J].Appl Opt,1981,20(18): 3098-3100. 被引量:1
  • 4Yan Tang,Xianyu Su,Yuankun Liu,et al. 3D shape measurement of the aspheric mirror by advanced phase measuring deflctometry[J].Opt Express,2008,16(19): 15090-15096. 被引量:1
  • 5J Balzer,S Werling. Principles of shape from specular reflection[J].Measurement,2010,43(10): 1305-1317. 被引量:1
  • 6M Knauer,J Kaminski,G Hausler. Phase measuring deflectomertry: a new approach to mearsure specular free form surfaces[C].SPIE,2004,5457: 366-376. 被引量:1
  • 7Daniel R Neal,James Copland,David Neal. Shack-Hartmann wavefront sensor precision and accuracy[C].SPIE,2002,4779: 148-160. 被引量:1
  • 8Peng Su,Yuhao Wang,James H Burge,et al. Non-null full field X-ray mirror metrology using SCOTS: a reflection deflectometry approach[J].Opt Express,2012,20(11): 12393-12406. 被引量:1
  • 9Lirong Wang,Peng Su,Robert Parks,et al. A low-cost,flexible,high dynamic range test for free-form illumination optics[C].SPIE,2010,7652: 76521H. 被引量:1
  • 10Margaret Z Dominguez,John Armstrong,Peng Su,et al. SCOTS: a useful tool for specifying and testing optics in slope space[C].SPIE,2012,8493: 84931D. 被引量:1

二级参考文献55

  • 1余景池,孙侠菲,郭培基,丁泽钊.光学元件检测技术的研究[J].光电工程,2002,29(S1):15-18. 被引量:11
  • 2张均,董军,张艳,张蓉竹,蔡邦维.数字刀口检测技术[J].光电工程,2005,32(5):65-68. 被引量:9
  • 3赵军普,陈波,彭翰生,景峰,秦兴武,胡东霞,李强,刘华,孙志红,徐隆波,程娟,卢宗贵.径向剪切干涉法综合诊断光束质量研究[J].强激光与粒子束,2006,18(4):565-568. 被引量:6
  • 4Wang Xiaopeng, Zhu Rihong, Wang Lei. Digital Foucault tester for the measurement of parabolic waveform \[C\]. SPIE, 2009, 7384: 738422. 被引量:1
  • 5苏显渝,李继陶.信息光学[M].北京:科学出版社,2002. 被引量:7
  • 6C. Zhao, J. H. Burge. Orthonormal vector polynomials in a unit circle, part I: basis set derived from gradients of Zernike polynomials[J]. Opt. Express, 2007, 15(26): 18014-18024. 被引量:1
  • 7R. J. Noll. Zernike polynomials and atmospheric turbulence[J]. J. Opt. Soc. Am., 1976, 66(3): 207-211. 被引量:1
  • 8M. Born, E. Wolf. Principle of Optics [ M]. Cambridge, Cambridge University Press, 2005. 被引量:1
  • 9R. Upton, B. Ellerbroek. Gram-Schmidt orthogonalization of the Zernike polynomials on apertures of arbitrary shape[J]. Opt. Lett., 2004, 29(24):2840-2842. 被引量:1
  • 10W. H. Swantner, W. H. Lowrey. Zernike-Tatian polynomials for interferogram reduction [J]. Appl. Opt. , 1980, 19 (1) : 161-163. 被引量:1

共引文献40

同被引文献47

引证文献3

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部