期刊文献+

Oscillation Criteria for Third-order NonlinearNeutral Dynamic Equations on Time Scales 被引量:3

下载PDF
导出
摘要 Many practical problems, such as those from electronic engineering, mechanicalengineering, ecological engineering, aerospace engineering and so on, need to bedescribed by dynamic equations on time scales, so it is important in theory andpractical significance to study these equations. In this paper, the oscillation andasymptotic behavior of third-order nonlinear neutral delay dynamic equations ontime scales are studied by using generalized Riccati transformation technique, integralaveraging methods and comparison theorems. The main purpose of this paperis to establish some new oscillation criteria for such dynamic equations. The newKamenev criteria and Philos criteria are given, and an example is considered toillustrate our main results.
出处 《工程数学学报》 CSCD 北大核心 2016年第2期206-220,共15页 Chinese Journal of Engineering Mathematics
  • 相关文献

参考文献14

  • 1Bohner M, Peterson A. Dynamic Equations on Time Scales, an Introduction with Applications[M]. Boston:Birkhauser, 2001. 被引量:1
  • 2Han Z L, Li T X, Sun S R, et al. Oscillation criteria for third order nonlinear delay dynamic equations ontime scales[J]. Annales Polonici Mathematici, 2010, 99(2): 143-156. 被引量:1
  • 3Erbe L H, Peterson A C, Saker S H. Asymptotic behavior of solutions of a third-order nonlinear dynamicequations on time scales[J]. Journal of Computational and Applied Mathematics, 2005, 181(1): 92-102. 被引量:1
  • 4Erbe L H, Peterson A C, Saker S H. Hille and Nehari type criteria for third order dynamic equations[J].Journal of Mathematical Analysis and Applications, 2007, 329(1): 112-131. 被引量:1
  • 5Erbe L H, Peterson A C, Saker S H. Oscillation and asymptotic behavior a third-order nonlinear dynamicequations[J]. The Canadian Applied Mathematics Quarterly, 2006, 14(2): 129-147. 被引量:1
  • 6Li T X, Han Z L, Sun Y B, et al. Asymptotic behavior of solutions for third-order half-linear delay dynamicequations on time scales[J]. Journal of Applied Mathematics and Computing, 2011, 36(1): 333-346. 被引量:1
  • 7Han Z L, Li T X, Sun S R, et al. Oscillation behavior of third-order neutral Emden-Fowler delay dynamicequations on time scales[J]. Advances in Difference Equations, 2010, 2010(1): 1-23. 被引量:1
  • 8Yu Z H, Wang Q R. Asymptotic behavior of solutions of third-order nonlinear dynamic equations on timescales[J]. Journal of Computational and Applied Mathematics, 2009, 225(2): 531-540. 被引量:1
  • 9Bohner M, Guseinov G S. Improper integrals on time scales[J]. Dynamic Systems and Applications, 2003,12(1-2): 45-65. 被引量:1
  • 10Zhang Z Y, Wang X X, Yu Y H. Oscillation theorems for third-order neutral differential equations withdistributed delay[J]. Chinese Journal of Engineering Mathematics, 2013, 30(6): 871-880. 被引量:1

二级参考文献7

  • 1Hilger S.Analysis on measure chains--A unified approach to continuous and discrete calculus[J].Results Math,1990,18:18-56. 被引量:1
  • 2Agarwal R P,Bohner M,O'Regan D,et al.Dynamic equations on time scales:A survey[J].J Comput Appl Math,2002,141(1-2):1-26. 被引量:1
  • 3Bohner M,Peterson A.Dynamic equations on time scales,an introduction with applications[M].Boston:Birkhauser,2001. 被引量:1
  • 4Zhang B G,Deng Xing-hua.Oscillation of delay differential equations on time scales[J].Math Comput Modelling,2002,36(11):1307-1318. 被引量:1
  • 5Agarwal R P,Bohner M,Saker S H.Oscillation of second order delay dynamic equations[J].Canadian Applied Mathematics Quarterly,2005,13 (1):1-18. 被引量:1
  • 6Zhang B G,Zhu Shan-liang.Oscillation of second order nonlinear delay dynamic equations on time scales[J].Computers Math Applic,2005,49 (4):599-609. 被引量:1
  • 7Sahiner Y.Oscillation of second-order delay differential equations on time scales[J].Nonlinear Analysis,TMA,2005,63(5-7):1073-1080. 被引量:1

共引文献7

同被引文献6

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部