摘要
基于材料力学、结构力学工程中静不定结构内力的求解多采用力法、位移法等方法,静不定结构在外载荷作用下的平衡状态是一个稳定的平衡状态,其应变能存在极小值,故利用静不定结构的多余约束力列出其应变能表达式,引入拉格朗日乘数并结合静力平衡方程,构造拉格朗日函数,对拉格朗日函数求一阶导数并令一阶导数等于0,即可求得静不定结构的内力,并通过算例予以证明。研究结果表明:此方法适用于求解平面或空间静不定梁、弧形结构、刚架、桁架(包括非线性材料)的约束反力、内力及位移;采用拉格朗日乘数法求解静不定桁架内力的通用性较强,不但可以克服常规方法需利用几何关系建立协调方程的缺陷,而且具有力学概念清晰直观、计算过程简洁、便于工程设计人员在实际中掌握和计算的优点;其所得结果是精确解析解,故可以用于检验其他方法的计算精度。
Force method and displacement method are usually adopted for calculation of engineering statically indeterminate structure force in materials mechanics and structure mechanics. Because equilibrium state of statically indeterminate structure is a stable one under external load, there are the minimum values for strain energy. Based on the extra restraint force of statically indeterminate structure, the expression of strain energy was presented. With the introduction of Lagrange multiplier and combined with the static equilibrium equation, the Lagrange function was established. The values of first derivative of Lagrange function were set as 0, and the force values of statically indeterminate structure were gotten. The results show that this method is suitable for the solution of restraint reaction, force and displacement for plane statically indeterminate(or space statically indeterminate), arc structure, steel frame and truss(including nonlinear material).The method of Lagrange multiplier for the solutions of statically indeterminate truss force can be widely applied. It overcomes the defects of establishing coordinate equations by the geometry relations in regular method. The force concept is clear, the calculation is simple and it is easy to be mastered by the engineering technician. As the analytical solution is accurate, it can be used to check the calculation accuracy obtained by other methods.
出处
《中南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016年第1期262-272,共11页
Journal of Central South University:Science and Technology
基金
湖南省科技计划项目(2011SK3145)
湖南"十二五"重点建设学科项目(湘教发[2011]76号)
湖南省自然科学基金资助项目(2015JJ6073)~~
关键词
静不定
结构
内力
平衡
拉格朗日函数
statically indeterminate
structure
force
equilibrium
Lagrange function