摘要
本文讨论在结构力学中用拉格朗日乘子法建立的广义变分原理以分析非线性超静定结构.我们假定结构的材料关于应力-应变的关系具有σ=Bε^(1/m)或τ=Cγ^(1/m)的形式,即结构的物理方程具有幂函数的形式.文中举出几个超静定结构的例子,例如桁架、梁、刚架和扭杆.
This paper discusses the generalized variational principles founded by the technique of Lagrangian multipliers in structural mechanics and analyzes the nonlinear statically indeterminate structures. It is assumed that the stress-strain relationship of the materials of structures has the form of a=Be1/m or r=cr1/m, namely, the physical equations of structures.which have the shape of exponential functions. Several examples are given to illustrate the statically indeterminate structures such as the trusses, beams, frames and torisonal bars.
出处
《应用数学和力学》
CSCD
北大核心
1993年第5期397-406,共10页
Applied Mathematics and Mechanics
关键词
广义变分原理
非线性结构
generalized variational principle, nonlinear structures, statically indeterminate structures