期刊文献+

Reactions of Group V Metal Atoms with Hydrogen Sulfide: Argon Matrix Infrared Spectra and Theoretical Calculations

基质隔离红外光谱结合理论计算研究第五族金属原子和硫化氢反应
下载PDF
导出
摘要 The reaction of laser-ablated vanadium, niobium and tantalum atoms with hydrogen sulfide has been investigated using matrix isolation FTIR and theoretical calculations. The metal atoms inserted into the H-S bond of H2S to form the HMSH molecules (M=V, Nb, Ta), which rearranged to H2MS molecules on annealing for Nb and Ta. The HMSH molecule can also further react with another H2S to form the H2M(SH)2 molecules. These new molecules were identified on the basis of the D2S and H234S isotopic substitutions. DFT (B3LYP and BPW91) theoretical calculations are used to predict energies, geometries, and vibrational frequencies for these novel metal dihydrido complexes and molecules. Reaction mechanism for formation of group V dihydrido complex was investigated by DFT internal reaction coordinate calculations. The dissociation of HVSH gave VS+H2 on broad band irradiation and reverse reaction happened on annealing. Based on B3LYP calculation releasing hydrogen from HVSH is endothermic only by 13.5 kcal/mol with lower energy barrier of 16.9 kcal/mol.
机构地区 同济大学化学系
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第1期10-20,I0001,共12页 化学物理学报(英文)
基金 This work was supported by the National Natural Science Foundation of China (No.21173158 and No.21373152) and the Ministry of Science and Tech- nology of China (No.2012YQ220113-7).
关键词 Hydrogen sulfide Matrix isolation Transition metal Density functional cal culation 硫化氢 基质隔离 过渡金属 DFT理论计算
分类号 O [理学]
  • 相关文献

参考文献45

  • 1J. Zaman and A. Chakma, ~el Process. Technol. 41, 159 (1995). 被引量:1
  • 2H. Shiina, M. Oya, K. Yamashita, A. Miyoshi, and H. Matsui, J. Phys. Chem. 100, 2136 (1996). 被引量:1
  • 3T. Chivers, J. B. Hyne, and C. Lau, Int. J. Hydrogen Energy 5, 499 (1980). 被引量:1
  • 4E. A. Fletcher, J. E. Noring, and J. P. Murray, Int. J. Hydrogen Energy 9, 587 (1984). 被引量:1
  • 5J. F. Reber and K. Meier, J. Phys. Chem. 88, 5903 (1984). 被引量:1
  • 6D. W. Kalina and E. T. Maas Jr., Int. J. Hydrogen Energy 10, 163 (1985). 被引量:1
  • 7D. W. Kalina and E. T. Maas Jr., Int. J. Hydrogen Energy 10, 157 (1985). 被引量:1
  • 8J. F. Reber and M. Rusek, J. Phys. Chem. 90, 824 (1986). 被引量:1
  • 9L. M. A1-Shamma and S. A. Naman, Int. J. Hydrogen Energy 15, 1 (1990). 被引量:1
  • 10K. Petrov and S. Srinivasan, Int. J. Hydrogen Energy 21, 163 (1996). 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部