期刊文献+

Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications 被引量:8

Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications
原文传递
导出
摘要 As one of the most important semiconductor materials, silicon (Si) has been widely used in current energy and optoelectronic devices, such as solar cells and photodetectors. However, the traditional Si p-n junction solar cells need complicated fabrication processes, leading to the high cost of Si photovoltaic devices. The wide applications of Si-based photodetectors are also hampered by their low sensitivity to ultraviolet and infrared light. Recently, two-dimensional (2D) layered materials have emerged as a new material system with tremendous potential for future energy and optoelectronic applications. The combination of Si with 2D layered materials represents an innovative approach to construct high-performance optoelectronic devices by harnessing the complementary advantages of both materials. In this review, we summarize the recent advances in 2D layered material/Si heterojunctions and their applications in photovoltaic and optoelectronic devices. Finally, the outlook and challenges of 2D layered material/Si heterojunctions for high-performance device applications are presented. As one of the most important semiconductor materials, silicon (Si) has been widely used in current energy and optoelectronic devices, such as solar cells and photodetectors. However, the traditional Si p-n junction solar cells need complicated fabrication processes, leading to the high cost of Si photovoltaic devices. The wide applications of Si-based photodetectors are also hampered by their low sensitivity to ultraviolet and infrared light. Recently, two-dimensional (2D) layered materials have emerged as a new material system with tremendous potential for future energy and optoelectronic applications. The combination of Si with 2D layered materials represents an innovative approach to construct high-performance optoelectronic devices by harnessing the complementary advantages of both materials. In this review, we summarize the recent advances in 2D layered material/Si heterojunctions and their applications in photovoltaic and optoelectronic devices. Finally, the outlook and challenges of 2D layered material/Si heterojunctions for high-performance device applications are presented.
出处 《Nano Research》 SCIE EI CAS CSCD 2016年第1期72-93,共22页 纳米研究(英文版)
基金 This work was supported by the National Basic Research Program of China (Nos. 2012CB932400 and 2013CB933500), the Major Research Plan of the National Natural Science Foundation of China (Nos. 91233110 and 91333208), the National Na~ral Science Foundation of China (No. 61422403), the Natural Science Foundation of Jiangsu Province (No. BK20140332), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). This work was also supported by QinLan Project.
关键词 two-dimensional layeredmaterials SILICON HETEROJUNCTIONS solar cells PHOTODETECTORS two-dimensional layeredmaterials,silicon,heterojunctions,solar cells,photodetectors
  • 相关文献

参考文献2

二级参考文献48

  • 1Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726. 被引量:1
  • 2Liu, M.; Yin, X. B.; Ulin-Avila, E.; Geng, B. S.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband optical modulator. Nature 2011, 474, 64-61. 被引量:1
  • 3Wang, X. M.; Cheng, Z. Z.; Xu, K.; Tsang, H. K.; Xu, J. B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888-891. 被引量:1
  • 4Pospischil, A.; Humer, M.; Furchi, M. M.; Bachmann, D.; Guider, R.; Fromherz, T.; Mueller, T. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 2013, 7, 892-896. 被引量:1
  • 5Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009,4, 839-843. 被引量:1
  • 6Sun, D.; Aivazian, G.; Jones, A. M.; Ross, J. S.; Yao, W.; Cobden, D.; Xu, X. D. Ultrafast hot-carrier-dominatedphotocurrent in graphene. Nat. Nanotechnol. 2012, 7, 114-118. 被引量:1
  • 7Liu, C. H.; Chang, Y. C.; Norris, T. B.; Zhong, Z. H. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotechnol. 2014, 9, 273-278. 被引量:1
  • 8Sun, Z. H.; Chang, H. X. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133-4156. 被引量:1
  • 9Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876-1902. 被引量:1
  • 10Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol.2011, 6, 147-150. 被引量:1

共引文献14

同被引文献32

引证文献8

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部