期刊文献+

基于混沌的MMAS算法及其在旅行商问题中的应用 被引量:10

Max-min Ant System Algorithm Based on Chaos and Its Application in TSP
下载PDF
导出
摘要 最大最小蚂蚁系统算法初始信息素均匀分布,但存在无法快速进行全局搜索,容易出现停滞并陷入局部最优的缺点。为此,通过引入全局遍历性能更优的Tent混沌映射,提出一种基于混沌的最大最小蚁群改进算法。利用混沌的遍历特性产生一组较优路径指导初始信息素的非均匀分布,运用混沌扰动的方法增强算法跳出局部最优的能力。以较大规模旅行商问题为应用对象进行实验,结果表明,改进算法具有更高的全局寻优成功率和更快的收敛速度。 In Max-min Ant System( MMAS) algorithm,initial pheromone distributes well,it can not reach global search,which is easy to stop and falls into local optima. Therefore an improved MMAS algorithm is proposed based on Tent chaotic mapping to enhance the capability of escaping from local optima. This method generates a group of candidates to guide the distribution of pheromone by exploiting ergodic property of chaos. When the searching stagnation is appeared,a chaotic disturbance method is utilized to obtain a better solution. Results among different ant colony optimization algorithm on large-scale Traveling Salesman Problem( TSP) showthat the improved algorithm has higher success rate and faster convergence rate for global optimization.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第3期192-197,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61374166) 教育部博士点基金资助项目(20120010110010) 中央高校基本科研业务费专项基金资助项目(YS1404)
关键词 混沌 TENT映射 最大最小蚂蚁系统 旅行商问题 信息素 chaos Tent mapping Max-min Ant System(MMAS) Traveling Salesman Problem(TSP) pheromone
  • 相关文献

参考文献16

  • 1Dorigo M, Maniezzo V, Colorni A. Ant System: Optimization by a Colony of Cooperating Agents [ J 1. IEEE Transactions on Systems, Man, and Cybernetics, Part B :Cybernetics, 1996,26 ( 1 ) :29-41. 被引量:1
  • 2Johnson D S, Mcgeoch L A. The Traveling Salesman Problem: A Case Study in Local Optimization I M 1. New York,USA :John Wiley and Sons,Inc. ,1996. 被引量:1
  • 3Dorigo M, Gambardella L M. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem [ J 1. IEEE Transactions on Evolu- tionary Computation, 1997,1 ( 1 ) :53-66. 被引量:1
  • 4Stutzle T,Hoos H H. Max-rain Ant System [ J 1. Future Generation Computer Systems, 2000,16 ( 8 ) :889-914. 被引量:1
  • 5Yu Weijie, Zhang Jun. Pheromone Distribution Based Adaptive Ant Colony System I C l//Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation. Portland,USA : E s. n. I ,2010:31-38. 被引量:1
  • 6Abdelbar A M. Is There a Computational Advantage to Representing Evaporation Rate in Ant Colony Optimiza- tion as a Gaussian Random Variable [ C ]//Proceedings of the 14th International Conference on Genetic and Evolutionary Computation Conference. New York, USA:ACM Press ,2012:1-8. 被引量:1
  • 7Abdelbar A M, Wunsch D C. Improving the Perfor- mance of Max-Min Ant System on the TSP Using Stubborn Ants [ C ]//Proceedings of the 14th Inter- national Conference on Genetic and Evolutionary Computation. New York, USA: ACM Press, 2012: 1395-1396. 被引量:1
  • 8李擎,张超,陈鹏,尹怡欣.一种基于粒子群参数优化的改进蚁群算法[J].控制与决策,2013,28(6):873-878. 被引量:110
  • 9薛锋,王慈光,牟峰.基于信息熵和混沌理论的遗传-蚁群协同优化算法[J].控制与决策,2011,26(1):44-48. 被引量:11
  • 10孟祥萍,片兆宇,沈中玉,苑全德.基于方向信息素协调的蚁群算法[J].控制与决策,2013,28(5):782-786. 被引量:42

二级参考文献61

共引文献204

同被引文献86

引证文献10

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部