期刊文献+

求解旅行商问题的自适应升温模拟退火算法 被引量:41

Adaptive temperature rising simulated annealing algorithm for traveling salesman problem
下载PDF
导出
摘要 针对传统模拟退火算法在求解问题时容易陷入局部最优解的情况,本文通过设计一种自适应的升温控制因子,提出了一种求解旅行商问题(TSP)的自适应升温模拟退火算法,有效地控制局部寻优达到全局寻优能力,并证明了改进的自适应模拟退火算法收敛性.通过TSPLIB数据库对改进算法全局寻优效果的测试,结果表明改进后的算法具有全局寻优能力、泛化性强等特点:即在TSPLIB提供的绝大部分TSP问题数据中,均能找到全局最优解,且收敛速度快. In view of the situation that the traditional simulated annealing(SA)algorithm is easy to fall into the local optimal solution when solving the problem,this paper designs an adaptive temperature rise control factor,and proposes an adaptive temperature rise SA algorithm for solving traveling salesman problem(TSP)problem,which effectively controls the local optimization to achieve the global optimization ability,and proves the convergence of the improved adaptive SA algorithm.Through the test of TSPLIB database on the global optimization effect of the improved algorithm,the results show that the improved algorithm has the characteristics of global optimization ability and strong generalization:that is,in most of the TSP problem data provided by TSPLIB,the global optimal solution can be found,and the convergence speed is fast.
作者 陈科胜 鲜思东 郭鹏 CHEN Ke-sheng;XIAN Si-dong;GUO Peng(Key Laboratory of Intelligent Analysis and Decision on Complex Systems,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2021年第2期245-254,共10页 Control Theory & Applications
基金 重庆市教委研究生教学改革研究项目(YJG183074) 重庆市社会科学规划项目(2018YBSH085) 重庆邮电大学大学生科研训练项目(A2019-25,R2019-85)。
关键词 自适应升温模拟退火算法 旅行商问题(TSP) TSPLIB 自适应 adaptive temperature rise simulated annealing algorithm travelling salesman problem(TSP) TSPLIB adaptive
  • 相关文献

参考文献14

二级参考文献120

  • 1HUANG Lan , ZHOU Chunguang and WANG Kangping(College of Computer Science and Technology, Jilin University, Changchun 130012, China).Hybrid ant colony algorithm for traveling salesman problem[J].Progress in Natural Science:Materials International,2003,13(4):295-299. 被引量:15
  • 2高海昌,冯博琴,朱利b.智能优化算法求解TSP问题[J].控制与决策,2006,21(3):241-247. 被引量:120
  • 3王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报,2007,30(5):748-755. 被引量:71
  • 4J Kennedy,R C Eberhart. Particle swarm optimization[A].in: Proceedings of the IEEE International Joint Conference on Neural Networks [ C ]. Piscataway, NJ: IEEE Service Center, IEEE Press, 1995. 1942 - 1948. 被引量:1
  • 5Qingyun Yang,Jigui sun, Juyang Zhang, Chunjie Wang.A hybrid discrete particle swarm algorithm for open-shop problems [A]. Proceedings of the 6th International Conference on Simulated Evolution And Learning (SEAL 2006) [ C]. Hefei, China, LNCS 4247,2006. 158 - 165. 被引量:1
  • 6K Rameshkumar, R K Suresh, K M Mohanasundaram. Discrete particle swarm optimization (DPSO) algorithm for permutation flowshop scheduling to minimize makspan[ A ]. In: Proc. ICNC 2005 [C]. Changsha, China, LNCS 3612,2005.572 - 581. 被引量:1
  • 7Pant,M Radha, T Singh, V P.A simple diversity guided particle swarm optimization [A]. IEEE Congress on Evolutionary Computation[C]. Singapore, CEC2007. 2007. 3294 - 3299. 被引量:1
  • 8Christopher K. Monson, Kevin D. Seppi, Adaptive Diversity in PSO[ A]. Proceedings of the 8th annual conference on Genetic and evolutionary computation Seattle [ C ]. Washington, USA, 2006.59 - 66. 被引量:1
  • 9M Clerc: Discrete particle swarm optimization, illustrated by the Traveling Salesman Problem[A ]. In: New Optimization Techniques in Engineering[ C ]. Heidelberg, Germany, 2004. 219 - 239. 被引量:1
  • 10A C. Nearchou, The effect of various operators on the genetic search for large scheduling problems[J]. Int. J. Product. E-conom. 2004,88( 1 ) : 191 - 203. 被引量:1

共引文献775

同被引文献362

引证文献41

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部