期刊文献+

多机场协同决策进离场航班排序模型及算法研究 被引量:15

Modeling and algorithm of arrival and departing aircraft sequencing in multi-airport terminal area collaborative decision
原文传递
导出
摘要 多机场终端区内的航线网络错综复杂,来往同一方向的航班会共用一个交接点,航班的起飞降落不仅要考虑各方向航空器的运行间隔和各受限单元容量的限制,还需着重考虑交接点的间隔限制。基于终端区多机场多元受限情况,建立了终端区多机场协同决策进离场航班排序模型,并设计了递归遗传算法。首先以各机场为单位采用遗传算法进行航班排序,得出各机场延误时间最小的排队序列,之后将各机场航班在交接点处进行聚类并排序,再将各交接点的排队序列反推回各机场,运用递归算法不断优化各机场的航班序列,在保证安全运行的基础上,最终得出各机场的航班排队序列。仿真结果表明,该算法优化效果显著,各机场的总延误时间减少了48.2%,可有效缓解多机场航班延误。 Airline network of multi-airport terminal area is so complicated that the arrival and departing of aircraft are restricted by operational separation and capacity of each unit,the aircraft go to or come from the same direction will pass the same joint point. Based on multi-restrict constraints of multi-airport terminal area,a sequencing model was set up. A recursive genetic algorithm was set up for sequencing. Firstly sequencing the aircraft of each airport,then aircraft which go through the same cross point was classified and sequenced according to the wake turbulence separation. Finally the queue of each cross point was inserted in to each airport,using the recursive genetic algorithm to optimize the sequences,created a new queue of each airport so as to ensure safety. It is proved that this model and algorithm will optimize the delay time and can decrease delay time 48. 2% than FCFS,which can reduce the delay efficiently.
出处 《飞行力学》 CSCD 北大核心 2016年第1期90-94,共5页 Flight Dynamics
基金 国家自然科学基金委员会与中国民用航空局联合资助(61179042) 中央高校基本科研经费资助(ZXH2012L005)
关键词 多机场终端区 多元受限 进离场排序 遗传算法 multi-airport terminal area multi-restrict constraints arrival and departing sequencing genetic algorithm
  • 相关文献

参考文献9

二级参考文献49

共引文献50

同被引文献69

引证文献15

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部