期刊文献+

基于MapReduce的卷积神经网络算法研究 被引量:2

A method for convolutional neural networks training based on MapReduce framwork
下载PDF
导出
摘要 卷积神经网络(convolutional neural networks,CNN)是深度学习技术应用最成熟的模型之一,利用卷积神经网络来提取特征进行目标识别和分析是当前比较热的研究方向。目前CNN主要以单机串行方式实现,随着大数据时代的到来,串行模式突显出训练时间过长,内存不足等问题。为此,本文提出了一种在分布式处理Hadoop平台上,基于MapReduce框架并行训练CNN的算法MR-TCNN。并通过实验证明,提出的方法与传统单机串行训练方式相比,在大数据上有更快的训练速度。 Convolutional neural networks (CNN) are one of the most mature deep learning models. Howev- er, CNN is generally serially trained by one machine, and serial training has problems such as long time consuming, and difficulties to train due to insufficient memory when facing massive data. For these prob- lems, this paper presents a method for CNN training based on MapReduce framework, MR-TC- NN. Experimental results demonstrate that this method has better training speed, comparing with convention- al training method.
出处 《中国体视学与图像分析》 2015年第4期339-346,共8页 Chinese Journal of Stereology and Image Analysis
基金 国家自然科学基金(611171156)
关键词 MAPREDUCE框架 卷积神经网络 并行化 MapReduce CNN parallelization
  • 相关文献

参考文献13

  • 1Lecun Y, Boser Bernhard E, Denker J S, et al. Back-propagation applied to handwritten zip code recognition [J]. Neural Computer, 1989, 1:541-551. 被引量:1
  • 2Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [ C ]// Proceed- ings of the IEEE, 1998, 86 ( 11 ) :2278 - 2324. 被引量:1
  • 3Frome A, Cheung G, Abdulkader A, et al. Large-Scale privacy protection in Google street view [ C ]//2009 IEEE 12th International Conference on Computer Vision. IEF, E, 2009 : 2373 - 2350. 被引量:1
  • 4Sermanet P, Lecun Y. Traffic sign recognition with Multi-scale Convolutional Networks [ C 1// The 2011 In- ternational Joint Conference on Neural Networks (IJC- NN). IEEE, 2011:2809-2813. 被引量:1
  • 5Ciresan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification [ C ]/! 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012 : 3642 - 3649. 被引量:1
  • 6Garcia C, Delakis M. Convolutional face finder: A neural architecture for fast and robust face detection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence. 2004, 26:1408 - 1423. 被引量:1
  • 7Osadchy M, Lecun Y, Miller M. Synergistic face detec- tion and pose estimation with energy-based models [ J]. Journal of Machine Learning Research, 2007, 1197- 1215. 被引量:1
  • 8Fan J, Xu W, Wu Y, et al. Human tracking using convo- lutional neural networks [J]. IEEE Transactions on Neu- ral Networks, 2010, 21 (10) : 1610 - 1623. 被引量:1
  • 9VenkatramanS, Kulkarni S. MapReduce neural network framework for efficient content based image retrieval from large datasets in the cloud[ C 1// 12'h International Con- ference on Hybrid Intelligent Systems (HIS). 2012. 被引量:1
  • 10Liu Zhiqiang, Li Hongyan, Miao Gaoshan. MapReduce- based backpropagation neural network over large scale mo- bile data[ C ]// Sixth International Conference on Natural Computation (ICNC). IEEE, 2010. 被引量:1

同被引文献5

引证文献2

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部