期刊文献+

基于SP_LDA模型的商品推荐算法 被引量:3

Algorithm of Commodity Recommendation Based on SP_LDA Model
下载PDF
导出
摘要 在电子商务的商品推荐系统中,为了给用户提供个性化的商品推荐,不少研究者提出了各自的推荐方法.由于方法中考虑的影响因素小等原因使得一些问题仍未得到解决,如:精准度不高、时间复杂度较高等.针对以上问题,在LDA主题挖掘模型的基础上提出了一种新的适用于商品(SP)推荐的数据挖掘模型:SP_LDA模型.通过该模型进行推导,得到商品概率的计算公式.通过对用户的历史购买数据和浏览数据进行分析,以计算的方式求解商品被推荐的概率,最终得到用户潜在感兴趣的商品.实验表明本模型能够高效地对商品进行挖掘,合理地向用户推荐感兴趣的商品. In commodity recommendation system of e-commerce,in order to provide users with personalized commodity recommendations,many researchers have proposed their own approches. Some problems remain unresolved due to fewinfluential factors and etc.were considered,such as: lowprecision and high time complexity. To solve the these problems,a newrecommendation model which is based on the LDA model is proposed,it is a data mining model which applies to recommending commodities( SP) : SP_LDA model.Through the derivation of the model,we get the calculation formula of the probability of goods. Users' historical purchasing data and browsing data are analysized in this model to calculate the probability of the recommended commodities,then we finally get commodities which the user is interested in. Experiments showthat the SP_LDA model can mine commodities effectively and recommend commodities to users reasonably.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第3期454-458,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61379057)资助
关键词 商品推荐 电子商务系统 SP_LDA模型 数据挖掘 commodity recommendation e-commerce systems SP_LDA model data mining
  • 相关文献

参考文献6

二级参考文献49

  • 1周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:102
  • 2王燕.一种改进的K-means聚类算法[J].计算机应用与软件,2004,21(10):122-123. 被引量:9
  • 3冀俊忠,沙志强,刘椿年.贝叶斯网模型在推荐系统中的应用研究[J].计算机工程,2005,31(13):32-34. 被引量:8
  • 4RESNICK P, VARIAN HR. Recommender systems[J]. Communications of the ACM, 1997, 40(3) : 56 -58. 被引量:1
  • 5SARWAR B, KARYPIS G, KONSTAN J, et al. Analysis of recom- mendation algorithms for E-commerce[ C]// Proceedings of the 2nd ACM Conference on Electronic Commerce. New York: ACM, 2000: 158 - 167. 被引量:1
  • 6SARWAR B M. Sparsity, scalability, and distribution in recommender systems[ D]. Minneapolis: University of Minnesota, 2001. 被引量:1
  • 7BRIDGE D, KELLEHER J. Experiments in sparsity reduction: Using clustering in collaborative recommenders[ C]// Proceedings of the 13th Irish International Conference on Artificial Intelligence and Cognitive Science. London: Springer-Verlag, 2002: 144- 149. 被引量:1
  • 8AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[ C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1993:207-216. 被引量:1
  • 9BURKE R. Knowledge-based recommender systems[ J]. Encyclopedia of Library and Informanation Systems, 2000, 69(32): 180 -200. 被引量:1
  • 10谢意.基于浏览偏好挖掘的实时商品推荐方法分析与研究[D].杭州:浙江大学,2010. 被引量:1

共引文献167

同被引文献49

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部