期刊文献+

一种新的目标检测方法:Latent Dirichlet classification 被引量:3

Latent Dirichlet classification:A new method for object detection
下载PDF
导出
摘要 图像目标检测的任务是通过对图像分块或者分区域提取特征,进行学习和分类,从而检测出目标在图像中的位置.基于潜在迪利克雷分布模型,提出一种应用于目标检测的主题模型latentDirichlet classification(LDC),结合图像连续值局部特征和共生关系来进行目标检测.LDC模型将latentDirichlet allocation(LDA)生成的主题信息作为权重赋予样本,生成多份样本,然后利用多份样本训练多个分类器进行集成分类.实验结果表明利用LDC模型能有效提高检测精度. Object detection and recognition is a hot topic in computer vision. Traditional methods use only local features for detection. Recently, some research results show that the detecting performance could be improving by using topic features. Some researchers employed topic models which is originally used for text analysis to extract topic features from images for object recognition and detection. However, visual features should be quantized into virtual words and information of class label should be ignored while using traditional topic models such as probabilistic latent sematic analysis (PLSA), latent Dirichlet allocation (LDA) and so on. In order to utilize continuous local features and information of class label in one model, we propose a new graphical model named latent Dirichlet classification(LDC), which is inspired by LDA model. The proposed model has three more variables than LDA in the graphical structure: x(loeal features), c(class label) and v(parameter). In the proposed model, we consider class label of each image block is determined by both of its local features and topic features based on original LDA model. Parameter v is a set of elassifiers trained for combining these two features. Similar with the inference process of LDA model, we use variational inference to solve our model. As a result of continuous local features, information of class label and topic features are all token into consideration reasonably, LDC ean be used in object detection directly and efficiently. In the end of this paper, we test the availability of LDC on two datasets. Experimental results show that our proposed model improve the performance of object detection efficiently.
出处 《南京大学学报(自然科学版)》 CSCD 北大核心 2012年第2期214-220,共7页 Journal of Nanjing University(Natural Science)
基金 国家自然科学基金(60875011) 江苏省自然科学基金重点项目(BK2010054)
关键词 潜在迪利克雷分布 目标检测 变分推理 主题模型 latent Dirichlet allocation, object-detection, variational inference, topic model
  • 相关文献

参考文献2

二级参考文献24

  • 1LI H, KALLERGI M, CLARKE L, et al. Markov random field for tumor detection in digital mammography [J].IEEE Transactions on Medical Imaging, 1995,14(3 ) : 565-576. 被引量:1
  • 2BIEDERMAN I, MEZZANOTTE R J, RABINOWITZ J C. Scene perception : detecting and judging objects undergoing relational violations [ J ]. Cognitive Psychology, 1982,14 ( 2 ) : 143-177. 被引量:1
  • 3HOFMANN T. Unsupervised learning by probabilistic latent semantic analysis [J]. Machine Learning, 2001,42 ( 1 ) : 177-196. 被引量:1
  • 4SIVIC J, RUSSELL B C, EFROS A A, et al. Discovering objects and their location in images[ C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2005:370-377. 被引量:1
  • 5BOSCH A, ZISSERMAN A, MUNOZ X. Scene classification via PLSA [ C ]//Proceedings of the ECCV. [S. l ] : [ s. n.], 2006:517-530. 被引量:1
  • 6BOSCH A, MLrNOZ X, OLIVER A, et al. Modeling and classifying breast tissue density in marnmograms[ C]//Proceedings of the International Conference on CVPR. Washington: IEEE Computer Society, 2006:1552-1558. 被引量:1
  • 7DEMPSTER A P, LAIRD N M, RUBIN D B, et al. Maximum likelihood from incomplete data via the EM algorithm [ J ]. Journal of the Royal Statistical Society Series 13 (Methodological), 1977,39( 1 ) : 1-38. 被引量:1
  • 8YANG S C, WANG C M, CHUNG Y N, et al. A computer-aided system for mass detection and classification in digitized mammograms[J]. Biomedical Engineering Applications Basis Communications, 2005,17 (5) : 215-228. 被引量:1
  • 9SNOEK CGM, WORRING M, GEUSEBROEK J M, et al. The semantic pathfinder: using an authoring metaphor for generic multimedia indexing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006: 1678-1689. 被引量:1
  • 10LINing, ZHOU Huajie, GUO Qiaojin, et al. A cost-sensitive cascaded method for automatic mass detection[ C]//Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Washington : IEEE Computer Society, 2008 : 3454-3458. 被引量:1

共引文献19

同被引文献86

  • 1LOWED G. Distinctive image features from scale-invariant key- points [ J]. International Journal of Computer Vision, 2004, 60 (2): 91-110. 被引量:1
  • 2DALAL N, TRIGGS B. Histograms of oriented gradients for humandetection [ C]// CVPR 2005: Proceedings of the 2005 IEEE Com- puter Society Conference on Computer Vision and Pattern Recogni- tion. Washington, DC: IEEE Computer Society, 2005, 1: 886- 893. 被引量:1
  • 3MAJI S, SHAKHNAROVICH G. Part discovery from partial corre- spondence [ C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013:931-938. 被引量:1
  • 4LI Q, WU J, TU Z. Harvesting mld-level visual concepts from large-scale Internet images [ C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piseat- away: IEEE Press, 2013:851 -858. 被引量:1
  • 5SINGH S, GUPTA A, EFROS A A. Unsupervised discovery of mid- level discriminative patches [ C]//ECCV 2012: Proceedings of the 12th European Conference on Computer Vision. Berlin: Springer- Verlag, 2012:73-86. 被引量:1
  • 6FELZENSZWALB P F, GIRSHICK R B, McALLESTER D, et al. Object detection with discriminatively trained part-based models /J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2010, 32(9) : 1627 - 1645. 被引量:1
  • 7MITYELMAN R, LEE H, KUIPERS B, et al. Weakly supervised learning of mid-level features with Beta-Bernoulli process restricted Bo|tzmann machines [ C]// Proceedings of the 2013 IEEE Confer- ence on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013:476-483. 被引量:1
  • 8SIVIC ,1, RUSSELL B, EFROS A, et al. Discovering object catego- ries in image collections [ R]. Cambridge: Massachusetts Institute of Technology, 2005. 被引量:1
  • 9LI L-J, SOCHER R, LI F-F. Towards total scene understanding: Classification, annotation and segmentation in an automatic frame- work [ C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2009: 2036 - 2043. 被引量:1
  • 10LI F-F, PERONA P. A Bayesian hierarchical model for learning natural scene categories [ C]// CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005, 2:524-531. 被引量:1

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部