期刊文献+

概率图模型推理方法的研究进展 被引量:5

Research and Development on Inference Technique in Probabilistic Graphical Models
下载PDF
导出
摘要 近年来概率图模型已成为不确定性推理的研究热点,在人工智能、机器学习与计算机视觉等领域有广阔的应用前景。根据网络结构与查询问题类型的不同,系统地综述了概率图模型的推理算法。首先讨论了贝叶斯网络与马尔可夫网络中解决概率查询问题的精确推理算法与近似推理算法,其中主要介绍精确推理中的VE算法、递归约束算法和团树算法,以及近似推理中的变分近似推理和抽样近似推理算法,并给出了解决MAP查询问题的常用推理算法;然后分别针对混合网络的连续与混合情况阐述其推理算法,并分析了暂态网络的精确推理、近似推理以及混合情况下的推理;最后指出了概率图模型推理方法未来的研究方向。 In recent years,probabilistic graphical models have become the focus of the research in uncertainty inference,because of their bright prospect for the application in artificial intelligence,machine learning,computer vision and so forth.According to different network structures and query questions,the inference algorithms of probabilistic graphical models were summarized in a systematic way.First,exact and approximate inference algorithms for solving the probability queries in Bayesian network and Markov network were discussed,including variable elimination algorithms,conditioning algorithms,clique tree algorithms,variational inference algorithms and sampling algorithms.The common algorithms for solving MAP queries were also introduced.Then the inference algorithms in hybrid networks were described respectively for continuous or hybrid cases.In addition,this work analyzed the exact and approximate inference in temporal networks,and described inference in continuous or hybrid cases for temporal networks.Finally,this work raised some questions that the inference algorithms of probabilistic graphical models are facing with and discussed their development in the future.
出处 《计算机科学》 CSCD 北大核心 2015年第4期1-18,30,共19页 Computer Science
基金 国家重点基础研究发展计划项目(973计划)(2012CB720500) 国家自然科学基金项目(21006127) 中国石油大学(北京)基础学科研究基金项目(JCXK-2011-07)资助
关键词 概率图模型 VE算法 团树算法 变分推理 抽样推理 MAP推理 混合网络推理 暂态网络推理 Probabilistic graphical model, Variable elimination, Clique tree, Variational inference, Sampling inference,MAP inference, Hybrid network inference, Temporal network inference
  • 相关文献

参考文献171

  • 1Estabragh,Shojaei Z,et al.Bayesian network model for diagnosis of Social Anxiety Disorder[C]∥IEEE International Confe-rence on Bioinformatics and Biomedicine Workshops.2011:639-640. 被引量:1
  • 2Bickson D,Baron D,Ihler A,et al.Fault Identification Via Nonparametric Belief Propagation[J].IEEE Transactions on Signal Processing,2011,59(6):2602-2613. 被引量:1
  • 3Zhang Lei,Ji Qiang.Bayesian Network Model for Automatic and Interactive Image Segmentation[J].IEEE Transactions on Ima-ge Processing,2011,20(9):2582-2593. 被引量:1
  • 4Fernandez R,Picard R.Recognizing affect from speech prosody using hierarchical graphical models[J].Speech Communication,2011,53(9/10):1088-1103. 被引量:1
  • 5Badiu M A,Kirkelund G E,Manchón C N,et al.Message-pas-sing algorithms for channel estimation and decoding using approximate inference[C]∥IEEE International Symposium on Information Theory.Cambridge,MA,USA:IEEE,2012:2376-2380. 被引量:1
  • 6Jordan M I,Ghahramani Z,Jaakkola T S,et al.An introduction to variational methods for graphical models[J].Machine lear-ning,1999,37(2):183-233. 被引量:1
  • 7Frey B J,Jojic N.A comparison of algorithms for inference and learning in probabilistic graphical models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(9):1392-1416. 被引量:1
  • 8Guo H,Hsu W.A survey of algorithms for real-time Bayesian network inference[C]∥AAAI Workshop on Real-Time Decision Support and Diagnosis Systems.Edmonton,Canada:AAAI Press,2002:1-12. 被引量:1
  • 9程强,陈峰,董建武,徐文立.概率图模型中的变分近似推理方法[J].自动化学报,2012,38(11):1721-1734. 被引量:9
  • 10Jordan M I.Graphical models[J].Statistical Science,2004,19(1):140-159. 被引量:1

二级参考文献2

共引文献8

同被引文献25

引证文献5

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部