期刊文献+

基于查询意图的数据空间预取方法

A dataspace prefetching method based on query intent
下载PDF
导出
摘要 为在查询前预取用户可能访问的数据,提出了一种利用查询日志的数据空间预取方法。该方法从查询日志中提取意图特征,并采用聚类技术对其进行聚类,识别用户查询意图,并基于该意图预取查询结果。实验结果表明:该方法在预取准确率和查询效率方面均显著优于已有方法。 In order to prefetch the data that may be accessed by user before a query was posed,a novel prefetching method towards databaspace by exploiting query logs was proposed. Firstly,some intention features were extracted from the query logs,and the clustering technique was performed on the intention features. Secondly,the user query intention was identified. Finally,the query answers were prefetched according to the identified intention. The experimental results show that the proposed method can not only have a higher accuracy,but also improve the query efficiency,and it outperforms the existing methods.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2016年第2期236-241,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(61272185) 黑龙江省自然科学基金资助项目(F201238 F020510) 中央高校基本科研业务专项资金资助项目(HEUCFZ1219 HEUCF100608 HEUCF100613)
关键词 数据空间 预取 查询意图 聚类 查询日志 查询结果 预取准确率 查询效率 dataspace prefetching query intent clustering query logs query answer prefetch accuracy query efficiency
  • 相关文献

参考文献10

  • 1FRANKLIN M, HALEVY A, MAIER D. From databases to dataspaces: a new abstraction for information management[J]. ACM SIGMOD record, 2005, 34(4): 27-33. 被引量:1
  • 2TURAB MIRZA H, CHEN Ling, CHEN Gencai. Practicability of dataspace systems[J]. International journal of digital content technology and its applications, 2010, 4(3): 233-243. 被引量:1
  • 3NANDINI N, YOGISH H K, RAJU G T. Pre-fetching techniques for effective web latency reduction - A survey[C]//Proceedings of IEEE AFRICON Conference. Pointe-Aux-Piments, 2013: 1-6. 被引量:1
  • 4GAWADE S, GUPTA H. Review of algorithms for web pre-fetching and caching[J]. International journal of advanced research in computer and communication engineering, 2012, 1(2): 62-65. 被引量:1
  • 5RAJU G T, SUDHAMANI M V. A novel approach for prefetching of web pages through clustering of web users to reduce the web latency[C]//Proceedings of International Conference On Advances In Computing. [S.l.], 2012: 983-989. 被引量:1
  • 6邢永康,马少平.多Markov链用户浏览预测模型[J].计算机学报,2003,26(11):1510-1517. 被引量:45
  • 7SHI Lei, GU Zhimin, PEI Yunxia, et al. A PPM prediction model based on web objects’ popularity[C]//Proceedings of the 2nd International Conference on Fuzzy Systems and Knowledge Discovery. Changsha, China: 2005: 110-119. 被引量:1
  • 8XU Chengzhong, IBRAHIM T I. A keyword-based semantic prefetching approach in Internet news services[J]. IEEE transactions on knowledge and data engineering, 2004, 16(5): 601-611. 被引量:1
  • 9KOU Gang, PENG Yi. An application of latent semantic analysis for text categorization[J]. International journal of computers, communications and control, 2015, 10(3): 357-369. 被引量:1
  • 10ASTUDILLO C A, JOHN OOMMEN B. Topology-oriented self-organizing maps: a survey[J]. Pattern analysis and applications, 2014, 17(2): 223-248. 被引量:1

二级参考文献9

  • 1史忠植.知识发现[M].北京:清华大学出版社,2001.. 被引量:18
  • 2Lawrence S, Giles C L. Accessibility of information on the Web. Nature, 1999, 400(7): 107-109 被引量:1
  • 3Zuckerman I, Albrecht D, Nicholson A. Predicting user′s requests on the WWW. In: Proceedings of the 7th International Conference on User Modeling, New York: Springer, 1999.275~284 被引量:1
  • 4Borges J, Levene M. Data mining of user navigation patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, CA: Springer-Verlag Press, 1999.92~111 被引量:1
  • 5Sarukkai R. Link prediction and path Analysis using Markov chains. In: Proceedings of the 9th world wide web conference, Amsterdam, Netherlands, 2000. http://www9.org/w9cdrom/68/68.html 被引量:1
  • 6Fu Y, Sandhu K, Shih M Y. Clustering of Web users based on access patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, San Diego, CA, 1999 被引量:1
  • 7Tak W Y, Matthew J, Hector G M. From user access pattern to dynamic hypertext linking. In: Proceedings of the 5th International World Wide Web conference, Paris France, 1996 被引量:1
  • 8Cooper G F, Herskovitz E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 1992, 9: 309~347 被引量:1
  • 9Heckerman D,Geiger D,Chickering M. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995, 20: 197~243 被引量:1

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部