期刊文献+

基于隐马尔科夫模型的浏览路径预测 被引量:2

Research prediction based on hidden Markov model
下载PDF
导出
摘要 基于马尔科夫模型的浏览路径预测,仅仅从用户的浏览会话本身出发来预测用户下一步的链接,并不能捕获用户的真正兴趣所在。运用隐马尔科夫模型来分析用户浏览网页的内容,可进一步捕获用户的浏览兴趣,并作下一步的链接预测。当浏览序列长度逐渐增加,系统捕获的用户浏览信息越来越多,此时能够折射出用户的兴趣所在,预测准确率也逐步增加。当浏览序列长度大于或等于8时,预测准确率已经到达80%,提高了预测准确率。 Research prediction of based on Latent Markov model, only from to research conversation itself set out to predict user's next chaining user, can not catch users' real interest. This text use Hidden Markov Model, analyse users browse through the content of the webpage, catch users' interest of research further, do next chaining to predict, When the browsing sequence length increases gradually, the system capture user browsing information are more and more many, this time can refract the user the interest to be at, forecast the rate of accuracy also gradually increases. When the browsing sequence length is bigger than or was equal to 8, forecast the rate of accuracy already arrived 80%, have improved the rate of accuracy of predicting.
出处 《黑龙江科技学院学报》 CAS 2005年第3期167-170,共4页 Journal of Heilongjiang Institute of Science and Technology
关键词 马尔科夫模型 浏览路径预测 WEB使用挖掘 聚类 Markov model research prediction Web usage mining cluster
  • 相关文献

参考文献11

  • 1BORGES JOSE, LEVENE MARK. A fine grained heuristic to capture Web navigation patterns[J]. ACM SIGKDD, 2000,2(7):1-40. 被引量:1
  • 2CROVELLA M E, BESTAVROS A. Self-similarity in World Wide Web traffic: evidence and possible causes [J]. IEEE/ACM Tran.on Networking, 1997, 5(6): 835-846. 被引量:1
  • 3SARUKKAI P R. Link prediction and path analysis using Markov chains[A]. In: 9th WWW Conference[C]. Amsterdam, 2000. 被引量:1
  • 4ZHU J J H, HE Z. Adoption and use of the Intemet among adult audiences in China's Mainland: the role of perceived popularity of the Intemet, perceived characteristics of the Internet, and perceived need for the Internet [A]. Paper Presented in the Special Panel on“Use and Impact of the Internet among Chinese Populations” at the Annual Conference of the International Communication Association[ C ]. Washington DC, 2001. 被引量:1
  • 5CADEZ I, HECKERMAN D, MEEK C, et al. Visualization of navigation patterns on a Web site using model based clustering[R]. Technical Report, MSR-TR-00-18, Microsoft Research,2000. 被引量:1
  • 6ZUKERMAN I, ALBRECHT D W, NICHOLSON A E. Predicting users222 requests on the WWW [A]. Proceedings of the 7th International Conference on User Modeling [C]. Banff, Canada,1999. 被引量:1
  • 7李颖基,彭宏,郑启伦,曾炜.Web日志中有趣关联规则的发现[J].计算机研究与发展,2003,40(3):435-439. 被引量:20
  • 8朱明..数据挖掘[M],2002.
  • 9周欣,沙朝锋,朱扬勇,施伯乐.兴趣度——关联规则的又一个阈值[J].计算机研究与发展,2000,37(5):627-633. 被引量:91
  • 10王实,高文,李锦涛,谢辉.路径聚类:在Web站点中的知识发现[J].计算机研究与发展,2001,38(4):482-486. 被引量:59

二级参考文献18

  • 1Aggarwal C C,Proc of the Int’ l Conf on Data Engineering,1998年,402页 被引量:1
  • 2Han J,Proc of Int’ l Conf Very Large Data Bases,1995年,420页 被引量:1
  • 3Yan T,Proc of the 5th Int World Wide Web Conf,1996年,27页 被引量:1
  • 4史忠植.知识发现[M].北京:清华大学出版社,2001.. 被引量:18
  • 5Lawrence S, Giles C L. Accessibility of information on the Web. Nature, 1999, 400(7): 107-109 被引量:1
  • 6Zuckerman I, Albrecht D, Nicholson A. Predicting user′s requests on the WWW. In: Proceedings of the 7th International Conference on User Modeling, New York: Springer, 1999.275~284 被引量:1
  • 7Borges J, Levene M. Data mining of user navigation patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, CA: Springer-Verlag Press, 1999.92~111 被引量:1
  • 8Sarukkai R. Link prediction and path Analysis using Markov chains. In: Proceedings of the 9th world wide web conference, Amsterdam, Netherlands, 2000. http://www9.org/w9cdrom/68/68.html 被引量:1
  • 9Fu Y, Sandhu K, Shih M Y. Clustering of Web users based on access patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, San Diego, CA, 1999 被引量:1
  • 10Tak W Y, Matthew J, Hector G M. From user access pattern to dynamic hypertext linking. In: Proceedings of the 5th International World Wide Web conference, Paris France, 1996 被引量:1

共引文献204

同被引文献31

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部