期刊文献+

改进的多通道循环结构跟踪

Improved Multi-channel Circulant Structure Tracking
下载PDF
导出
摘要 为了进一步提高多通道循环结构跟踪算法的鲁棒性,提出适用于线性和非线性条件的一种通用多通道关联滤波器(MCF).首先从时域入手推导得到MCF的通用形式;在此基础上,依靠线性核和高斯核函数分别得到线性和非线性条件下MCF最常用的两种形式.通过HOG这种多通道特征因子,在视频序列上进行实验.结果表明,在线性条件下,文中方法与频域法相比鲁棒性大致相同;在非线性条件下,该方法比现有方法具有更强的鲁棒性. To further improve the robustness of the multi-channel circulant structure tracking, a novel general multi-channel correlation filter (MCF) is proposed, which can be applied in linear and nonlinear situations. First the general MCF is derived from the time domain; Then the mostly used two forms of MCF under linear and nonlinear situations can be got by means of linear and Gaussian kernel functions. Experiment is held on video sequences by HOG feature. Results show that proposed method has substantially the same robustness compared with frequency domain method under linear situation and is more robust than existing method under nonlinear situation.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第3期456-463,共8页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61203374) 中央高校基本科研业务费专项资金(2014G3322008)
关键词 循环结构跟踪 多通道关联滤波器 线性条件 非线性条件 时域 circulant structure tracking multi-channel correlation filter linear situation nonlinear situation time domain
  • 相关文献

参考文献20

  • 1Comaniciu D, Vision R T, Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine In telligence, 2003, 25(5): 564-576. 被引量:1
  • 2Adam A , R ivlin E, Shimshoni I. Robust fragments-basedtracking using the integral histogram[C]//Proceedings o f theIEEE Computer Society Conference on Computer Vision andPattern Recognition. Los Alam itos: IEEE Computer SocietyPress, 2006, 1:798-805. 被引量:1
  • 3N ing J F, Zhang L, Zhang D, et al. Robust mean-shift trackingw ith corrected background-weighted histogram [J]. IET ComputerVision, 2012, 6(1): 62-69. 被引量:1
  • 4Sevilla-Lara L, Learned-M iller E. D istribution fields fo r tracking[C] //Proceedings o f the IEEE Conference on Computer V isionand Pattern Recognition. Los Alam itos: IEEE ComputerSociety Press, 2012: 1910-1917. 被引量:1
  • 5相入喜,李见为.多特征自适应融合的粒子滤波跟踪算法[J].计算机辅助设计与图形学学报,2012,24(1):97-103. 被引量:22
  • 6Smeulders A W M , Chu D M , Cucchiara R, et al. Visual tracking:an experimental survey [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2013, 36(7): 1442-1468. 被引量:1
  • 7Avidan S. Support vector tracking[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2004,26(8): 1064-1072. 被引量:1
  • 8Safifari A , Leistner C, Santner J, et al. On-line random forests[C]//Proceedings o f the 12th IEEE International Conference onComputer Vision Workshops. Los Alam itos: IEEE ComputerSociety Press, 2009: 1393-1400. 被引量:1
  • 9Grabner H, Leistner C, B ischof H. Semi-supervised on-lineboosting for robust tracking[M] //Lecture Notes in ComputerScience. Heidelberg: Springer, 2008, 5302: 234-247. 被引量:1
  • 10Babenko B, Yang M H, Belongie S. Robust object trackingw ith online m ultiple instance leam ing[J]. IEEE Transactions onPattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632. 被引量:1

二级参考文献3

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部