期刊文献+

运用聚类方法的分层采样粒子滤波算法 被引量:3

Stratified sampling particle filter algorithm based on clustering method
下载PDF
导出
摘要 针对跟踪过程中运动目标形态不断变化及跟踪不精确导致鲁棒性差的问题,提出了一种运用聚类方法的分层采样粒子滤波算法。通过分层采样把采样空间分成多个部分,使采样点集中于被采样概率密度函数值大的部分,采样误差降低到了原算法的一半;聚类方法利用权重实现合理分配粒子,使粒子的多样性得到保持,因而粒子跟踪的精度得到了提高。实验结果表明,所提算法的跟踪误差不到原算法的一半,每个仿真时间里稳定性都有加强,而且跟踪精度也有所提高。 To solve the poor robustness due to the changing moving target or the inaccurate tracking, a stratified sampling particle filter algorithm based on clustering method was proposed. The sampling space was divided into several parts by group sampling to make sampling points focused on the big probability density value part, thus the sampling error was reduced half of the original; the clustering algorithm could group the particles reasonably by weight, the diversity of particles was kept, thus the tracking precision was improved. The experimental results show that the tracking error of proposed method is less than half of the original one, and the stability has strengthened in each simulation time, as well as the tracking precision.
作者 周航 叶俊勇
出处 《计算机应用》 CSCD 北大核心 2013年第1期69-71,共3页 journal of Computer Applications
基金 国家科技支撑计划基金资助项目(2007BAG06B06)
关键词 运动目标 粒子滤波 分层采样 聚类方法 追踪精度 moving target particle filter stratified sampling clustering method tracking precision
  • 相关文献

参考文献12

二级参考文献49

共引文献47

同被引文献36

  • 1康莉,谢维信,黄敬雄.基于unscented粒子滤波的红外弱小目标跟踪[J].系统工程与电子技术,2007,29(1):1-4. 被引量:9
  • 2汪志红.电阻应变片式六维力传感器弹性体力学特性的研究[D].芜湖:安徽工程大学,2013. 被引量:5
  • 3梁康桥. 特殊应用的多维力/ 力矩传感器研究与应用 [D]. 合肥:中国科学技术大学,2009. 被引量:1
  • 4Gao J B,Harris C J. Some Remarks on Kalman Filters for the Multi-sensor Fusion [J]. Information Fusion, 2002,7(3):191-201. 被引量:1
  • 5Rigatos G G. Nonlinear Kalman Filters and Particle Filters for Integrated Navigation of Unmanned Aerial Vehicles[J]. Robotics and Autonomous Systems,2012, 60(2):978-995. 被引量:1
  • 6Rigatos G G. Extended Kalman and Particle Filtering for Sensor Fusion in Motion Control of Mobile Robots[J]. Mathematics and Computers in Simulation, 2010, 81 (3):590-607. 被引量:1
  • 7徐芝纶. 弹性力学(下册)[M]. 北京:知识产权出版社,2011. 被引量:1
  • 8Arulampalam S,Maskell S R,Gordon N J. A Tutorial on Particle Filters for On-line Nonlinear / Non-Gaussian Bayesian Tracking [J]. IEEE Transactions on Signal Processing,2002,50(2):174-188. 被引量:1
  • 9胡士强,敬忠良. 粒子滤波原理及原理[M]. 北京: 科学出版社,2010. 被引量:1
  • 10Ryan A,Hedrick J K. Particle Filter Based Informationtheoretic Active Sensing[J]. Robotics and Autonomous Systems,2010,58(2):574-584. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部