摘要
给定一个n维紧致无边的微分流形M,已证明:如果tr_FRic≤s_F,那么从Berwald空间(M,F)到Riemann空间(M,F)的任何逐点C-射影变换均是平凡的,并且F关于F是平行的。这里,tr_FRic表示F的Ricci曲率张量Ric关于F的迹,s_F:=tr_FRic是F的数量曲率。特别地:如果tr_FRic≤s_F,那么从Riemann空间(M,F)到另一个Riemann空间(M,F)的任何射影变换都是平凡的。
Given a compact and boundaryless n-dimensional differentiable manifold M, we showed that any pointwise C-projective changes from a Berwald space (M, F) to a Riemann space (M, F) is trivial if trr Ric≤sF, where trF Ric denotes the trace of the Ricci curvature Ric of F with respect to F and sF = trF Ric is the scalar curvature of F. In particular, we showed that any projective change from a Riemann space (M,F) to another Riemann space (M,F) is trivial if trF Pdc≤sF.
出处
《重庆理工大学学报(自然科学)》
CAS
2016年第1期107-110,共4页
Journal of Chongqing University of Technology:Natural Science
基金
国家自然科学基金资助项目(11371386)
欧盟FP7(SEVENTH FRAMEWORK PROGRAMME)资助项目(PIRSES-GA-2012-317721)