期刊文献+

从Berwald空间到Riemann空间的射影变换

Projective Changes from Berwald Spaces to Riemann Spaces
下载PDF
导出
摘要 给定一个n维紧致无边的微分流形M,已证明:如果tr_FRic≤s_F,那么从Berwald空间(M,F)到Riemann空间(M,F)的任何逐点C-射影变换均是平凡的,并且F关于F是平行的。这里,tr_FRic表示F的Ricci曲率张量Ric关于F的迹,s_F:=tr_FRic是F的数量曲率。特别地:如果tr_FRic≤s_F,那么从Riemann空间(M,F)到另一个Riemann空间(M,F)的任何射影变换都是平凡的。 Given a compact and boundaryless n-dimensional differentiable manifold M, we showed that any pointwise C-projective changes from a Berwald space (M, F) to a Riemann space (M, F) is trivial if trr Ric≤sF, where trF Ric denotes the trace of the Ricci curvature Ric of F with respect to F and sF = trF Ric is the scalar curvature of F. In particular, we showed that any projective change from a Riemann space (M,F) to another Riemann space (M,F) is trivial if trF Pdc≤sF.
出处 《重庆理工大学学报(自然科学)》 CAS 2016年第1期107-110,共4页 Journal of Chongqing University of Technology:Natural Science
基金 国家自然科学基金资助项目(11371386) 欧盟FP7(SEVENTH FRAMEWORK PROGRAMME)资助项目(PIRSES-GA-2012-317721)
关键词 芬斯勒度量 Berwald空间 射影变换 RICCI曲率 数量曲率 Finsler metric Berwald space projective change Ricci curvature scalar curvature
  • 相关文献

参考文献8

  • 1BAO D,CHERN S S,SHEN Z.An introduction to Rie- mann-FinsIer geometry[M].Springer Science & Business Media'2012. 被引量:1
  • 2CHEN X,SHEN Z.A comparison theorem on the Hicci curvature in projective geometry[J].Annals of Global A- nalysis and Geometry,2003,23(2):141-155. 被引量:1
  • 3SHEN Z.Differential geometry of sprays and Finsler spaces[M].[S.I.]:Kluwer Academic Publishers,2001. 被引量:1
  • 4MATSUMOTO M.Projective changes of FinsIer metrics and projectively flat Finsler spaces[J].Tensor,NS,1980,34:303-315. 被引量:1
  • 5SHEN Z.On projectively related Einstein metrics in Rie- mann-Finsler geometry[J].Mathematische Annalen,2001,320(4):625-647. 被引量:1
  • 6FUKUI M,YAMADA T.On projective mappings in Fin- sler geometry[J].Tensor,NS,1981,31:216-222. 被引量:1
  • 7ANTONELU P L,INGARDEN R S,MATSUMOTO M.The theory of sprays and Finsler spaces with applications in physics and biology[M].[S.I.]:Springer Science & Business Media,2013. 被引量:1
  • 8SHEN Z.Lectures on Finsler Geometry[M].[S.I.]:World Scientific Co.,Singapore,2001. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部