摘要
Ishai等人首先提出了批处理码的概念,Peterson等人从纯组合的观点定义了(n,N,k,m)-组合批处理码:即是一个n元集和它的m个子集组成的集合系统,对于整数尼,满足任意k个元素都能从每个子集中至多读取1个元素(可以一般化为t个元素)来取得,此时m个子集中元素的总数为N.对给定的参数n,k,m,确定N的最小值N(n,k,m)是该问题研究的中心内容,它不仅具有理论意义,而且有着重要的使用价值.到目前为止,除了一些极特殊的参数以外,当k≥5,m+3≤n<(m k-2)时,N(n,k,m)的值还没有被确定.本文给出了N(m+3,5,m)=m+11(m≥7),N(9,5,6)=18,N(m+3,6,m)=m+13(m≥8),N(10,6,7)=21.得到的结果部分解决了:Peterson等人提出的未解决问题.
Batch codes were first proposed by Ishai et al., an (n, N, k, rn)-combinatorial batch code was defined by Peterson et al. as a purely combinatorial version of batch codes. It is a system consisting of m subsets of an n-element set such that any k elements can be retrieved by reading at most one (or in general, t) elements from each subset and the number of total elements in rn subsets is N. For given parameters n, k, rn, the minimum N, denoted by N(n, k. m), is of particular interest, which has both theoretical interests and strong practical motivation. So far, for k ≥ 5, m + 3 〈 n 〈 (kin-2), precise values of N(n, k, m) have not been established except for some special settings of the parameters. In this article, we obtain N(m+3, 5, m) = m+ 11 (m 〉 7), N(9, 5, 6) = 18, N(m + 3, 6, m) = m + 13 (m ≥8), N(10, 6, 7) = 21. Our results partly answer an open problem of Paterson et al.
出处
《数学学报(中文版)》
CSCD
北大核心
2016年第2期267-278,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11171089
11371121)
河北省自然科学基金资助项目(A2013205073)
河北师范大学科研基金资助项目(L2015Z02)