期刊文献+

基于运动目标轨迹优化的监控视频浓缩方法 被引量:7

Surveillance Video Synopsis Based on Object Trajectory Optimization
下载PDF
导出
摘要 视频浓缩是包含原视频有效信息的简短表示,以便于视频的存储、浏览和检索。然而,大部分视频浓缩方法得到的浓缩视频中会丢失少量目标,不能完整表达原始视频的全部内容。本文介绍了一种基于目标轨迹优化的视频浓缩方法。首先使用改进的目标轨迹提取算法提取原视频中目标的轨迹,然后利用马尔可夫随机场模型和松弛线性规划算法得到每条轨迹的最优时间标签,将其与背景序列和目标轨迹结合生成浓缩视频。实验结果表明,与传统的视频浓缩方法相比,本文方法生成的浓缩视频具有较高的浓缩比,保证了信息的完整性又具有良好的视觉效果。 Video synopsis is a temporally compact representation of the original video, which facilitates the subsequent video processing, such as video storage, browsing and retrieval. Most of conventional methods easily lose some important objects and can not represent the original videos completely. Therefore, this paper proposes a novel method based on object trajectory optimization. The method extracts object trajectories using an improved multi-object tracking method, and optimizes the temporal shift labels of those trajectories. The optimal labels are then formulated as the maximum a posteriori state of a special Markov random field, which can be solved by the relaxed linear programming method. The synopsis video is obtained by integrating the optimal labels into the background sequence. Extensive experi- ments on both public and collected video sequences suggest that our method outperforms other methods in accuracy. In particular, our method can retain most essential information of the video sources in shorter synopsis videos.
出处 《数据采集与处理》 CSCD 北大核心 2016年第1期108-116,共9页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61472002 61502006)资助项目 安徽省自然科学基金(1308085MF97)资助项目
关键词 视频浓缩 视频监控 马尔可夫随机场 松弛线性规划 video synopsis video surveillance Markov random filed relaxed linear programming
  • 相关文献

参考文献16

  • 1姬贯新,周利莉.智能视频监控系统中的干扰检测及分类[J].数据采集与处理,2013,28(2):231-238. 被引量:5
  • 2Kang H W, Matsushita Y, Tang X, et al. Space-time video montage[C] //Computer Vision and Pattern Recognition (CVPR). Providence, New York: IEEE, 2006, 2 1331-1338. 被引量:1
  • 3Nie Y, Xiao C, Sun H, et al. Compact video synopsis via global spatiotemporal optimization[J]. Visualization and Computer Graphics, IEEE Transactions on, 2013, 19(10): 1664-1676. 被引量:1
  • 4Feng S, Lei Z, Yi D, et al. Online content aware video eondensation[C]//Computer Vision and Pattern Recognition (CVPR). Providence, Rhode Island: IEEE, 2012: 2082-2087. 被引量:1
  • 5Zhu J, Feng S, Yi D, et al. High performance video condensation system[J]. IEEE Transaction on Circuits and Systems for Video Technology, 2015,25(7) : 1113-1124. 被引量:1
  • 6Rav-Acha A, Pritch Y, Peleg S. Making a long video short: Dynamic video synopsis[C]// Computer Vision and Pattern Recognition (CVPR). Providence, New York IEEE, 2006, 1.- 435 441. 被引量:1
  • 7Pritch Y, Rav-Acha A, Gutman A, et al. Webcam synopsis: Peeking around the world[C]//Computer Vision, 2007. ICCV 2007. Providence, Rio de Janeiro: IEEE, 2007:1 8. 被引量:1
  • 8Pritch Y, Rav-Acha A, Peleg S. Nonchronological video synopsis and indexing[J]. Pattern Analysis and Machine Intelli gence, IEEE Transactions on, 2008, 30(11): 1971-1984. 被引量:1
  • 9唐铭谦..基于对象的监控视频摘要算法研究[D].西安电子科技大学,2014:
  • 10Barnich O, Van Droogenbroeck M. ViBe: A universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6) 1709-1724. 被引量:1

二级参考文献37

  • 1李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1231
  • 2方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 3吕国亮,赵曙光,赵俊.基于三帧差分和连通性检验的图像运动目标检测新方法[J].液晶与显示,2007,22(1):87-93. 被引量:36
  • 4王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 5Bradski G R. Real time face and object tracking as a component of a perceptual user interface[C] ff Pro- ceedings of Applications of Computer Vision, WACV'98.[S. 1.]: IEE, 1998:214-219. 被引量:1
  • 6Stauffer C, Grimsen W. Adaptive background mix- ture models for real time tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins Colorado, USA: IEEE, 1999: 246-252. 被引量:1
  • 7Toyama K, Krumm J, Brumitt B. Wallflower prin- ciples and pratice of background maintenance[C] ff The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999. [S. I. ]: IEEE, 1999: 255-261. 被引量:1
  • 8Spampinato C. Adaptive objects tracking by using statistical features shape modeling and histogram analysis l'C-lffThe Seventh International Conference on Advances in Pattern Recognition. [S. 1]: I- CAPR, 2009 : 270-273. 被引量:1
  • 9Kwang I K, Keechul J, Jin H K. Texture-based ap- proach for text detection in images using support vector machines and continuously adaptive mean shift algorithm[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2003, 25(12): 1631- 1639. 被引量:1
  • 10Jollll G A, Richard Y D, Xu J S J. Object tracking using camshift algorithm and multiple quantized fea- ture spaces[J]. Australian Computer Society, 2004, 55(6) : 3-7. 被引量:1

共引文献25

同被引文献62

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部