期刊文献+

大数据时代的车牌汉字识别 被引量:2

Recognition of Chinese characters on license plates based on big data
下载PDF
导出
摘要 在大数据时代,交通信息成为网络数据量最大的数据来源之一,智能交通成为必然需求.车牌识别是智能交通的基础,可广泛应用于车库管理、交通监控等工程中,然而识别的准确率还有待加强,已有算法对于字母、数字的识别准确率都非常高,而对于中国特有的汉字识别却效果不佳.提出用受限玻尔兹曼机组成的深信度网络算法来识别车牌字符,大大提升了汉字识别的准确率,使准确率达到99.44%. Today, traffic provides sources of huge scale data sets on the network, calling for the development of intelligent traffic. The license plate recognition (LPR) techniques are an important basis of intelligent traffic, and widely applied in applications such as garage management and traffic monitoring. However, the current LPR algorithms are imperfect in terms of recognition accuracy. Although working well in recognizing English letters and digits, they are unsatisfactory in recognizing Chinese characters. This paper proposes a license plate recognition algorithm using a deep belief network (DBN) algorithm consisting of restricted Boltzmann machines (RBM). It greatly improves the quality of Chinese character recognition with accuracy rate up to 99.44%.
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期88-96,共9页 Journal of Shanghai University:Natural Science Edition
基金 上海市科委资助项目(14DZ2261200)
关键词 车牌汉字识别 深信度网络 受限玻尔兹曼机 深度学习 license plate of Chinese character recognition deep belief network restricted Boltzmann machine deep learning
  • 相关文献

参考文献16

  • 1王笑京,沈鸿飞,汪林.中国智能交通系统发展战略研究[J].交通运输系统工程与信息,2006,6(4):9-12. 被引量:55
  • 2吴佳..车辆牌照识别系统的设计与实现[D].北京交通大学,2015:
  • 3中华人民共和国公安部. GA36—2014 中华人民共和国公共安全行业标准: 中华人民共和国机动车号牌[S]. 北京: 中国标准出版社, 2014. 被引量:1
  • 4Wu F, Wang Y G, Hou X W. License plate character recognition based on framelet [C]// International Conference on Wavelet Analysis and Pattern Recognition. 2007: 673-676. 被引量:1
  • 5Cheng R, Bai Y P. A novel approach for license plate slant correction, character segmentation and Chinese character recognition [J]. International Journal of Signal Processing Image Processing and Pattern Recognition, 2014, 7(1): 353-364. 被引量:1
  • 6汪启伟..图像直方图特征及其应用研究[D].中国科学技术大学,2014:
  • 7蔺海峰,马宇峰,宋涛.基于SIFT特征目标跟踪算法研究[J].自动化学报,2010,36(8):1204-1208. 被引量:71
  • 8Ciresan D, Meier U, Masci J, et al. A committee of neural networks for traffic sign classification [C]//International Joint Conference on Neural Networks. 2011: 1918-1921. 被引量:1
  • 9Google Tessact [EB/OL]. [2015-10-19]. http://sourceforge.net/projects/tesseract-ocr/. 被引量:1
  • 10Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. 被引量:1

二级参考文献13

  • 1Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 229-240. 被引量:1
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575. 被引量:1
  • 3Feng Z R, Lu N, Jiang P. Posterior probability mea sure for image matching. Pattern Recognition, 2008, 41(7): 2422-2433. 被引量:1
  • 4Hu W M, Tan T N, Wang L, Maybank S. A survey on visual surveillance of object motion and behaviors. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2004, 34(3): 334-352. 被引量:1
  • 5Zhou H Y, Yuan Y, Shi C M. Object tracking using SIFT features and mean shift. Computer Vision and Image Understanding, 2009, 113(3): 345-352. 被引量:1
  • 6Suga A, Fukuda K, Takiguchi T, Ariki Y. Object recognition and segmentation using SIFT and graph cuts. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE, 2008. 1-4. 被引量:1
  • 7Lowe D G. Distinctive image features from scale invariant key points. International Journal of Computer Vision, 2004, 60(2): 91-110. 被引量:1
  • 8Lowe D G. Object recognition from local scale invariant features. In: Proceedings of the 7th International Conference on Computer Vision. Corfu, Greece: IEEE, 1999. 1150-1157. 被引量:1
  • 9王学仁,系统科学与数学,1994年,14卷 被引量:1
  • 10李国英,数理统计与应用概率,1990年,5卷 被引量:1

共引文献139

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部