期刊文献+

基于图像模糊度与主成分分析的车牌汉字识别 被引量:4

License plate Chinese character recognition algorithm based on image fuzzy degree and PCA
原文传递
导出
摘要 针对车牌汉字字符结构复杂且图像品质差异大而导致识别率不高的情况,提出了一种基于图像模糊度的主成分分析(PCA)子空间车牌汉字字符识别方法。首先通过三角模和非模糊基数计算字符图像的模糊度,然后根据模糊度将训练样本分成不同的子集并生成相应的PCA子空间族,最后以待识别字符的模糊度为依据选择相应的子空间族进行识别。实验数据表明,本文方法使得子类的类内距离变小类间距离增大,从而可以获得较高的识别率。与其他算法的对比实验进一步表明,本文算法能更好地同时满足精度和实时性的要求,具有良好的综合性能。 Aiming at the low recognition rate of Chinese characters in license plates a new recognition algorithm is proposed based on image fuzzy degree and principat component analysis(PCA) subspace classification method.First,the image fuzzy degree is computed according to triangular norm and non-fuzziness cardinality.Then the training samples are divided into three subsets in terms of fuzzy degree,and their corresponding PCA subspaces are constructed.At last,the character is recognized in the specific subspaces which are chosen by the character′s fuzzy degree.The experiment results show that this algorithm can reduce the intra-subclass distances and augment the inter-subclass distances,consequently it has higher recognition rate.The comparative test results indicate further that our algorithm has more favorable comprehensive performance than other algorithms,which can better meet the demands of precision and real-time processing simultaneously.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2010年第3期444-447,共4页 Journal of Optoelectronics·Laser
基金 天津市公安交通局科研基金资助项目(公科[2005]16号)
关键词 车牌汉字识别 主成分分析(PCA) 模糊度 子空间族 license plate Chinese character recognition principal component analysis(PCA) fuzzy degree subspaces
  • 相关文献

参考文献12

二级参考文献58

共引文献84

同被引文献48

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2蔡盛,李清安,乔彦峰.基于BP神经网络的姿态测量系统摄像机标定[J].光电子.激光,2007,18(7):832-834. 被引量:19
  • 3Wong Kwan-Yee, ZHANG Guo-qiang, LIANG Chen, et al. 1D camera geometry and its application to the self-calibration of circular motion sequences[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2008,30(8) :2243-2248. 被引量:1
  • 4GE Dong-yuan, YAO Xi-fan. Camera calibration and precision analysis based on BP neural network[A]. Proceedings of 2^nd International Congress on Image and Signal Processing [C]. Piscataway: IEEE Computer Society,2009,2350-2354. 被引量:1
  • 5Hu G, MacKunis W, Gans N, et al. Homography-based visual servo control with imperfect camera calibration[J]. Automatic Control, IEEE Transactions on., 2009,54(6) : 1318-1324. 被引量:1
  • 6Sanger T D. Optimal unsupervised learning in a single-layer linear feedforward NN[ J]. Neural Networks, 1989,2 : 459-473. 被引量:1
  • 7Kung S Y. Diamantaras K L. A neural network learning algorithm for adaptive principal component extraction(APEX)[A]. Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process[C]. Piscataway: IEEE press, 1990,861-864. 被引量:1
  • 8CHEN Liang-Hua, CHANG Shyang. An adaptive learning algorithm for principal component analysis[J]. IEEE Trans. Neural Networks, 1995,6(5) : 1255-1263. 被引量:1
  • 9Palmieri F,Zhu J. Self-association and hebbian learning in linear neural networks[J].IEEE Trans. Neural Networks, ]995,6 (5) :1165-1184. 被引量:1
  • 10Simon Haykin. Neural networks. A comprehensive foundation [M]. New York: Macmilan College Publishing Company, 1994, 372-398. 被引量:1

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部