期刊文献+

Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling

Van der Waals heterostructure of phosphorene and hexagonal boron nitride: First-principles modeling
下载PDF
导出
摘要 We have studied the structural and electronic properties of a hybrid hexagonal boron nitride with phosphorene nanocomposite using ab initio density functional calculations. It is found that the interaction between the hexagonal boron nitride and phosphorene is dominated by the weak van der Waals interaction, with their own intrinsic electronic properties preserved. Furthermore, the band gap of the nanocomposite is dependent on the interfacial distance. Our results could shed light on the design of new devices based on van der Waals heterostructure. We have studied the structural and electronic properties of a hybrid hexagonal boron nitride with phosphorene nanocomposite using ab initio density functional calculations. It is found that the interaction between the hexagonal boron nitride and phosphorene is dominated by the weak van der Waals interaction, with their own intrinsic electronic properties preserved. Furthermore, the band gap of the nanocomposite is dependent on the interfacial distance. Our results could shed light on the design of new devices based on van der Waals heterostructure.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期342-346,共5页 中国物理B(英文版)
基金 Projected supported by the National Natural Science Foundation of China(Grant No.11574167) the New Century 151 Talents Project of Zhejiang Province,China the K.C.Wong Magna Foundation in Ningbo University,China
关键词 density functional theory hexagonal boron nitride NANOCOMPOSITE phosphorene density functional theory, hexagonal boron nitride, nanocomposite, phosphorene
  • 相关文献

参考文献51

  • 1Coleman J N, Lotya M, Bergin S D, et al. 2011 Science 331 568. 被引量:1
  • 2Li L, Yu Y,Ge Q, Ou X, Wu H, Feng D, Chen X and Zhang Y 2014 Nat. Nanotechnol. 9 372. 被引量:1
  • 3Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033. 被引量:1
  • 4Jiang J W and Park H S 2014 Nat. Commun. 5 4727. 被引量:1
  • 5Yu G, Lü X, Jiang L, Gao W and Zheng Y 2013 J. Phys. D: Appl. Phys. 46 375303. 被引量:1
  • 6Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902. 被引量:1
  • 7Ramasubramaniam A, Naveh D and Towe E 2011 Phys. Rev. B 84 205325. 被引量:1
  • 8Bao Q, Zhang H, Wang B, Ni Z, Lim C H Y X, Wang Y, Tang D Y and Loh K P 2011 Nat. Photon. 5 411. 被引量:1
  • 9Bao Q and Loh K P 2012 ACS Nano 6 3677. 被引量:1
  • 10Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部