期刊文献+

基于钻削声音信号累积功率谱的钻头失效监测 被引量:1

Monitoring of failure drill based on cumulative power spectrum of acoustic information
下载PDF
导出
摘要 钻头工况的实时自动监测有助于提高钻削加工过程的可靠性。针对钻头磨损在线监测,提出基于钻头工作声音信号累积功率谱的失效监测法。采用驻极体声电转换器采集声音信号,根据钻头磨损的慢变性,提出基于累积功率谱提取能量特征集的方案,并使用BIF特征选择结合Fisher准则筛选最优特征集,解决特征数量较多的问题。最后,利用二分类逻辑回归实现特征集与磨损量之间的数学建模,以h函数值作为失效判断的依据。结果表明:系统在钻头磨损严重并接近失效时,计算失效概率值>0.7,近似等于真实值,能为钻头更换决策提供可靠依据。 Real-time and automatic detection of drill's working conditions contribute to improve the reliability of drilling process. An approach for online drill wear monitoring was proposed according to the cumulative power spectrum of drill acoustic information. The acoustic information was acquired by an electret microphone. The optimal feature set was screened by BIF feature selection and Fisher criterion to minimize the number of features. Furthermore, a mathematical model for feature set and wear amount was created by binary logistic regression and the function h was used as the criterion for failure determination. The study has indicated that the failure probability is higher than 0.7 and approximately equals to the true value when the drill is worn heavily and almost out of service. This approach mentioned above can provide a reliable basis for drill replacement.
出处 《中国测试》 CAS 北大核心 2016年第2期111-114,共4页 China Measurement & Test
基金 桂林市科技攻关项目(LD14042E) 广西重点学科重点实验室项目(LD12047B)
关键词 钻头磨损 声音信号 功率谱 BIF FISHER准则 逻辑回归 drill wear acoustic signal power spectrum BIF Fisher criterion logic regression
  • 相关文献

参考文献11

二级参考文献90

  • 1叶大鹏,刘震,张春良.小波包隐Markov模型刀具状态识别研究[J].南华大学学报(自然科学版),2007,21(3):13-15. 被引量:1
  • 2朱云芳,戴朝华,傅攀.采用小波神经网络的刀具故障诊断[J].振动.测试与诊断,2006,26(1):64-66. 被引量:11
  • 3[2]Bernhard Sick. Fusion of Hard and Soft Computing Techniques in Indirect ,Online Tool Wear Monitoring ,IEEE TRANS ON SYSTEMS,MAN,AND CYBERNETICS-PART C:APPLICATIONS AND REVIEWS,VOL.32,NO.2,MAY 2002. 被引量:1
  • 4[3]Daubechies. I. The wavelet transform, time-frequency localization and signal analysis. IEEE Transcations on Information Theory, 1990, 36(5):961-1005. 被引量:1
  • 5[4]Ibrahim Nur Tansel,etal. Detection of tool failure in end milling with wavelet transform ations and neural network(WT-NN).Int. J.Mach. Tools manufact. 1995,35(4):1137-1147. 被引量:1
  • 6[5]Kasashima N,etal. Online failure detection in face milling using discrete wavelet transform. Annals of the CIRP, 1995,44(1):483-487. 被引量:1
  • 7[6]Blanco A,Delgado M,Requena I.Identification of fuzzy relational equations by fuzzy neural networks. Fuzzy Sets and Systems, 1995,71 (1):215-226. 被引量:1
  • 8ERKKI J. A summary of methods applied to tool condition monitoring in drilling[J]. Intemational Journal of Machine Tools&Manufacture, 2002, 42(10): 997-1010. 被引量:1
  • 9GOVERKAR E, GRABEC I. Self-organizing neural network application to drill wear classification[J]. Joumal of Engineering for Industry, 1994, 116(5): 233-238. 被引量:1
  • 10LIU TI, ANANTHARAMAN K S. Intelligent classification and measurement of drill wear[J]. Journal of Engineering of Industry, 1994, 116(15): 233-238. 被引量:1

共引文献255

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部