期刊文献+

结合类别偏好信息的item-based协同过滤算法 被引量:12

Improved item-based collaborative filtering algorithm combined with class preference information
下载PDF
导出
摘要 传统的基于项目的协同过滤算法离线计算项目相似性,提高了在线推荐速度,但该算法仍然不能解决数据稀疏性所带来的问题,计算出的项目相似性准确度较差,影响了推荐质量。针对这一问题,提出了一种结合类别偏好信息的协同过滤算法。定义了类别偏好相似性,采用类别偏好相似性方法为目标项目找出一组类别偏好相似的候选邻居,在候选邻居中搜寻最近邻,排除了与目标项目共同评分较少项目的干扰,从整体上提高了最近邻搜寻的准确性。在Movie Lens数据集上进行了实验,实验结果表明,新算法的推荐质量较传统的基于项目的协同过滤算法有显著提高。 The traditional item-based collaborative filtering( CF) algorithm computes item-item similarity offline,so it enhances the real-time performance of recommender system. However,item-based CF algorithm still suffers from the data sparsity problem,as a result that the recommendation quality is poor. To address this issue,this paper proposed a novel CF algorithm combined with class preference information. The proposed algorithm first found out candidate neighbors who were similar to the target item in class preference. Then it searched for nearest neighbors in the candidate neighbor set,which eliminated the interference of the items those had few co-ratings with the target item. Experimental results based on Movie Lens dataset show that the recommendation quality of the new algorithm is significantly improved compared with traditional item-based CF algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2016年第3期669-672,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(71201145) 上海市教育委员会科研创新资助项目(15ZS064) 上海电力学院科研基金资助项目(K2014-037) 上海高校青年教师培养资助计划(zzsdl15115)
关键词 推荐系统 协同过滤 类别偏好 相似性 recommender system collaborative filtering class preference similarity
  • 相关文献

参考文献16

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:546
  • 2吴湖,王永吉,王哲,王秀利,杜栓柱.两阶段联合聚类协同过滤算法[J].软件学报,2010,21(5):1042-1054. 被引量:83
  • 3Al-Shamri M Y H. Power coefficient as a similarity measure for memo-ry-based collaborative recommender systems[J] . Expert Systems with Applications, 2014, 41(13):5680-5688. 被引量:1
  • 4Choi K, Suh Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[J] . Knowledge-Based Systems, 2013, 37(1):146-153. 被引量:1
  • 5Vozalis M G, Margaritis K G. Using SVD and demographic data for the enhancement of generalized collaborative filtering[J] . Information Sciences, 2007, 177(15):3017-3037. 被引量:1
  • 6Chen Gang, Wang Fei, Zhang Changshui. Collaborative filtering using orthogonal nonnegative matrix tri-factorization[J] . Information Processing and Management, 2009, 45(3):368-379. 被引量:1
  • 7Sarwar B M, Karypis G, Konstan J, et al. Recommender systems for large-scale e-commerce:scalable neighborhood formation using clustering[C] //Proc of the 5th InternationalConference on Computer and Information Technology. 2002. 被引量:1
  • 8Shan H H, Banerjee A. Bayesian co-clustering[C] //Proc of IEEE InternationalConference on Data Mining. Washington DC:IEEE Computer Society, 2008:530-539. 被引量:1
  • 9Sarwar B M, Karypis G, Konstan J A, et al. Item-based collaborative filtering recommendation algorithms[C] //Proc of the 10th InternationalConference on World Wide Web. New York:ACM Press, 2001:285-295. 被引量:1
  • 10Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J] . IEEE Trans on Knowledge and Data Engineering, 2005, 17(6):734-749. 被引量:1

二级参考文献120

  • 1Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217. 被引量:1
  • 2Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201. 被引量:1
  • 3Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186. 被引量:1
  • 4Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999. 被引量:1
  • 5Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362. 被引量:1
  • 6Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html 被引量:1
  • 7Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749. 被引量:1
  • 8Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58. 被引量:1
  • 9Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72. 被引量:1
  • 10Schafer JB, Konstan J, Riedl J. Recommender systems in e-commerce. In: Proc. of the 1 st ACM Conf. on Electronic Commerce. New York: ACM Press, 1999. 158-166. 被引量:1

共引文献636

同被引文献59

引证文献12

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部