摘要
A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge(DBD) using parallel-plate reactor in air.The electron energy conservation equation is coupled to the electron continuity equation,the heavy species continuity equation,and Poisson's equation for a better description.The reliability of the model is experimentally confirmed.The model can be used to predict the temporal and spatial evolution of species,as well as streamer propagation.The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche.Streamer propagation velocity is about 5.26×104m/s from anode to cathode in the simulated condition.The primary positive ion,negative ion,and excited species are O_2~+,O_3^-and O_2(1?g) in pulsed DBD in air,respectively.N_2 O has the largest density among nitrogen oxides.e and N_2~+densities in the streamer head increase gradually to maximum values with the development of the streamer.Meanwhile,the O_2~+,O,O_3,N_2(A^3Σ) and N_2 O densities reach maximum values in the vicinity of the anode.
A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge(DBD) using parallel-plate reactor in air.The electron energy conservation equation is coupled to the electron continuity equation,the heavy species continuity equation,and Poisson's equation for a better description.The reliability of the model is experimentally confirmed.The model can be used to predict the temporal and spatial evolution of species,as well as streamer propagation.The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche.Streamer propagation velocity is about 5.26×104m/s from anode to cathode in the simulated condition.The primary positive ion,negative ion,and excited species are O_2~+,O_3^-and O_2(1?g) in pulsed DBD in air,respectively.N_2 O has the largest density among nitrogen oxides.e and N_2~+densities in the streamer head increase gradually to maximum values with the development of the streamer.Meanwhile,the O_2~+,O,O_3,N_2(A^3Σ) and N_2 O densities reach maximum values in the vicinity of the anode.
基金
supported by National Natural Science Foundation of China(Nos.51366012 and 11105067)
Jiangxi Province Young Scientists(Jinggang Star)Cultivation Plan of China(No.20133BCB23008)
Natural Science Foundation of Jiangxi,China(No.20151BAB206047)
Jiangxi Province Higher School Science and Technology Landing Plan of China(No.KJLD-14015)