期刊文献+

基于特征语义分析的数控机床设计知识精确智能推送方法 被引量:20

Intelligent push method of CNC design knowledge based on feature semantic analysis
下载PDF
导出
摘要 针对设计流程驱动的数控机床设计知识推送过程中不同设计人员在设计任务中的设计知识需求差异问题,提出基于特征语义分析的数控机床设计知识推送方法。通过建立非线性权重的数控机床设计知识描述词—设计知识语义简约矩阵,利用奇异值分解对描述词—设计知识语义简约矩阵进行降维,将描述词—设计知识语义简约矩阵映射至低维特征语义空间。提取了数控机床设计工作流上下文模型中的设计知识需求,并计算了设计知识与知识需求的匹配度,同时构建了设计知识设计人员兴趣个性化的过滤规则对设计知识进行二阶段过滤,最终获得符合设计人员知识需求差异的数控机床设计知识推送方案。以某型号高精度数控坐标镗床切削力设计的设计知识推送方案为例,验证了该方法在工程应用中的正确性与高效性。 Inefficiency of knowledge acquisition has become a key factor restricting of improving the design quality and shortening the design cycle of CNC machine tools.In CNC design knowledge push process driven by design procedure,aiming at the design knowledge demand difference of different designers,an intelligent push method of CNC design knowledge based on latent semantic analysis was proposed.A semantic matrix of description words and design knowledge with nonlinear weight coefficient was developed,and the semantic matrix was mapped to a low-dimensional space by singular value decomposition.The requirements of design knowledge were extracted from the model of design process and the fitness value was evaluated.According to the designers'personal interests,the filtering rules were created and the push solution of design knowledge was filtered.A case study was provided to illustrate the practical application of the proposed method.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2016年第1期189-201,共13页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51322506 51275459) 浙江省自然科学基金资助项目(LR14E050003) 中央高校基本科研业务费专项资金资助项目(2015FZA4004)~~
关键词 产品设计 知识推送 特征语义 数控机床 设计知识 product design knowledge push feature semantic machine tools design knowledge
  • 相关文献

参考文献26

  • 1张善辉,杨超英,刘震宇.基于本体的机械产品设计知识嵌入方法[J].计算机集成制造系统,2010,16(11):2385-2391. 被引量:15
  • 2陈伟东..基于本体的航天科技领域知识推送技术研究[D].浙江大学,2013:
  • 3ROCCA G L. Knowledge based engineering: between AI and CAD. Review of a language based technology to support engi- neering design[J]. Advanced Engineering Informatics, 2012,26 (2) :159-179. 被引量:1
  • 4DEGEMMIS M, LOPS P,SEMERARO G. A content-collabo- rative recommender that exploits word net-based user profiles for neighborhood formation[J]. User Modeling and User-A- dapted Interaction,2007,17(3) :217-255. 被引量:1
  • 5TOSI D, MORASCA S. Supporting the semi-automatic sema- ntic annotation of web services: a systematic literature review [J], Information and Software Technology, 2015,61: 16-32. DOI: 10. 1016/J. INFSOF. 2015.01. 007. 被引量:1
  • 6KONSTAN J A, RIEDL J. Recommender systems: from algo- rithms to user experience[J]. User Modeling and User-Adap- ted Interaction,2012,22($1) : 101-123. 被引量:1
  • 7KOBAYASHI I, SAITO M. A study on an information rec- ommendation system that provides topical information related to user's inquiry for information retrieval[J]. New Generation Computing, 2007,26 (1) : 39-48. 被引量:1
  • 8JUNG J. Attribute selection-based recommendation frame work {or short-head user group: an empirical study by MovieLens and IMDB[J]. Expert Systems with Applications, 2012,39 (4) : 4:049-4054. 被引量:1
  • 9LIN C T, HONG W C, CHEN Y F, et al. Application of sal- esman-like recommendation system in 3G mobile phone on-line shopping decision support[J]. Expert Systems with Applica- tions,2010,37(12) :8065-8078. 被引量:1
  • 10MOON S K, SIMPSON T W, KUMARA S R T. An agent based recommender system for developing customized families of products [J]. Journal of Intelligent Manufacturing, 2009, 20(6) :649-659. 被引量:1

二级参考文献129

共引文献369

同被引文献128

引证文献20

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部