期刊文献+

基于RBF网络的焊缝缺陷图像的识别与诊断技术研究 被引量:5

Research on Recognition and Diagnosis Technology of Weld Defect Image Based on RBF Network
下载PDF
导出
摘要 本文主要研究了采用中值滤波、LOG算子的边缘检测以及DSA减影等数字图像处理技术对现有的焊缝缺陷图像进行处理,获得带有各种焊缝缺陷特征的大量图像样本,并用RBF神经网络对样本进行训练,最终获得具有较高识别精度的RBF网络。利用该网络可以大大提高对焊缝缺陷的判断效率,具有一定实用意义。 How to deal with the processing of weld defect was studied by using digital image processing techniques, such as image with the median filtering, LOG edge detection operator and DSA subtraction, and a large number of image samples with various weld defect characteristics were obtained. Then the samples were trained by RBF neural network, and the final RBF network was achieved which had a high enough recognition accuracy. The use of the network can greatly improve the efficiency of weld defect judgment, so the research has a certain practical significance.
出处 《热加工工艺》 CSCD 北大核心 2016年第1期217-220,共4页 Hot Working Technology
基金 陕西省教育厅科学研究计划项目(2013JK1168)
关键词 图像处理技术 焊缝缺陷识别 RBF神经网络 technology of image processing defect recognition RBF neural network
  • 相关文献

参考文献4

二级参考文献15

  • 1LIAO T W.Classification of welding flaw types with fuzzy expert systems[J].Expert Systems with Applications.2003.25(1),101-111. 被引量:1
  • 2LIM T Y,RATNAM M M,KHALID M A.Automatic classification of weld defects using simulated data and an MLP neural network[J].Insight,2007,49(3):154-159. 被引量:1
  • 3MERY D,DASILVAR R,CALOBAL P,et al.Pattern recognition in the automatic inspection of aluminium castings[J].Insight,2003,45(7):475-483. 被引量:1
  • 4WANG G,LIAO T W.Automatic identification of different types of welding defects in radiographic images[J].NDT & E International,2002,35(8):519-528. 被引量:1
  • 5ZHANG Xiaoguang,ZHU Zhencai,XU Jihua,et al.The classification algorithm of defects in weld image based on asymmetrical SVM[C] //International Conference on Control and Automation.Piscataway,NJ,USA:IEEE,2005:1215-1219. 被引量:1
  • 6ZHANG Xiaoguang,XU Jianjian,GE Guangying.Defects recognition on X-ray images for weld inspection using SVM[C] //Proceedings of 2004 International Conference on Machine Learning and Cybernetics.Piscataway,NJ,USA:IEEE,2004:3721-3725. 被引量:1
  • 7SILVA R R,CALA L P,SIQUEIRA M H S,et al.Pattern recognition of weld defects detected by radiographic test[J].NDT& E International,2004,37(6):461-470. 被引量:1
  • 8EFRON B,TIBSHIRANI R J.An introduction to the bootstrap[M].London,UK:Chapman & Hall,1997. 被引量:1
  • 9HSU C W,CHANG C C,LIU C J.A practical guide to support vector classification[EB/OL].[2010-03-20].http://www.csie.ntu.edu.tw/~cjlin/liblinear/. 被引量:1
  • 10章毓晋.图像分割[M].北京:科学出版社,2001.34. 被引量:222

共引文献428

同被引文献31

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部