期刊文献+

基于家系研究的空腹血糖水平遗传模式分析

Analysis on the genetic model of fasting plasma glucose level on the basis of family studies
原文传递
导出
摘要 目的研究遗传因素作用于空腹血糖(FPG)水平的模式,为探讨复杂性疾病的遗传方式、寻找疾病主效基因提供依据。方法本研究采用家系研究设计,在课题组前期收集的慢性病家系队列中,选取符合条件的非糖尿病家系285个,其中核心家系17个,同胞对387对。采用S.A.G.E.6.3软件分析家系中不同亲属间FPG水平的相关性,并对家系中FPG水平进行分离分析,筛选出家系中FPG水平传递的最佳模型。结果研究共纳入686名研究对象,其FPG水平的中位数(四分位数间距)为5.0(1.0)mmol/L,其中,先证者的FPG水平为5.0(1.1)mmol/L。家系中母-子(n=54,相关性系数为0.422 4,P<0.01)、母-女(n=41,相关性系数为0.435 7,P<0.01)、姐妹间(n=91,相关性系数为0.341 3,P<0.01)的相关性有统计学意义,而配偶(n=17)、父-女(n=26)、父-子(n=29)、兄弟间(n=119)以及异性同胞间(n=177)FPG水平的相关性均无统计学意义(P>0.05),提示,性别可能影响家系中FPG的水平。混合分离分析显示,三均值模型的赤池信息量准则(Akaike’s Information Criteria,AIC)值(1 664.728)最小,此模型最佳,提示在该家系中存在影响FPG水平的主效应因素。进一步复杂分离分析显示,与一般模型相比,孟德尔遗传模型和共显性模型均被拒绝(P<0.01);而环境模型与一般模型无统计学差异(P>0.05),且其AIC值最小,为最佳模型。结论家系中FPG水平的分布不存在主效基因效应,FPG的水平主要受环境因素影响。 Objective To investigate the genetic model of fasting plasma glucose(FPG) levels, and to provide the basis for studying the genetic mode and exploring the major genes for complex diseases. Methods The family studies were used to collect285 eligible non-diabetic families, including 17 nuclear families and 387 sibling pairs. The correlation of FPG levels between different relatives of families was analyzed by S.A.G.E. 6.3 software. The segregation analysis was conducted for FPG levels. The best horizontal transmission model of FPG levels was screened. Results A total of 686 subjects were included in this study. The FPG level [M(IQR)] of all subjects was 5.1(1.0) mmol/L, the FPG level of probands was 5.0(1.1) mmol/L. There was good familial correlation of FPG levels between mother and son(n=54, r=0.422 4, P〈0.01), between mother and daughter(n=41, r=0.435 7, P〈0.01), between sister and sister(n =91, r =0.341 3, P〈0.01). There was no good familial correlation of FPG levels between spouses(n=17), father-daughter(n=26), father-son(n=29), brother-brother(n=119) and brother-sister(n=177), P〈0.05. It was suggested that gender could influence the fasting plasma glucose levels in families. Commingling segregation analysis revealed that a three-component distribution model with the minimum AIC value(1 664.728) was the best-fitting model to describe the distribution of fasting plasma glucose level, suggesting the major effect factor of FPG levels existed in the families.Further complex segregation analysis showed that as compared with the general model, Mendelian model and Co dominant model were rejected(P〈0.01). There was no significant difference between environmental model and general model, the environmental model was the best-fitting model due to the minimum AIC value. Conclusion The results suggest that there is no major gene in the distribution of fasting plasma glucose level of families. FPG levels are influenced mainly by the environmental factors in f
出处 《中国慢性病预防与控制》 CAS 2016年第2期89-92,共4页 Chinese Journal of Prevention and Control of Chronic Diseases
基金 国家自然科学基金重点项目(81230066) 国家自然科学基金项目(81102177 8172744 81473043 81172768)
关键词 空腹血糖 分离分析 主效基因 遗传模式 Fasting plasma glucose Segregation analysis Major genes Genetic model
  • 相关文献

参考文献22

  • 1翟迎九,周丽诺,鹿斌,董雪红,杨叶虹,施海明,罗心平,范维琥,胡仁明.空腹血糖受损与冠状动脉病变的关系[J].中华内科杂志,2005,44(5):379-380. 被引量:12
  • 2Coutinho M, Gerstein HC, Wang Y, et al. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years[ J ]. Diabetes Care,1999,22(2):233-240. 被引量:1
  • 3Levitan EB, Song Y, Ford ES, et al. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies[J ]. Arch Intern Med,2004,164( 19 ):2147-2155. 被引量:1
  • 4Danaei G, Lawes CM, Vander HS, et al. Global and regional mortality from ischaemie heart disease and stroke attributable to higher-than- optimum blood glucose concentration: comparative risk assessment [J]. Lancet,2006,368(9548 ):1651-1659. 被引量:1
  • 5Seshasai SR, Kaptoge S, Thompson A, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death[J ]. N Engl J Med,2011,364 (9):829-841. 被引量:1
  • 6Kahn SE, Cooper ME, Del PS. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future[J]. Lancet, 2014,383(9922):1068-1083. 被引量:1
  • 7Gai JY, Wang JK. Identification and estimation of a QTL model and its effects[J]. Thero Appl Genet,1998,97(7 ):1162-1168. 被引量:1
  • 8Khoury M, Beaty T, Cohen B. Fundamentals of Genetic Epidemiology [ M I. New York:Oxford University Press,1993:164-165. 被引量:1
  • 9Tang X, Hu Y, Chen D, et al. The Fangshan/Family-based Ischemic Stroke Study In China (FISSIC) protocol [J/OL]. BMC Med Genet, 2007,8:6012015-10-14]. http://www.biomedcentral, com/1471 - 2350/8/60, doi: 10.1186/1471-2350-8-60. 被引量:1
  • 10孙可欣,刘志科,曹亚英,隽娟,项骁,杨成,黄少平,刘晓芬,李娜,唐迅,李劲,吴涛,陈大方,胡永华.北京某社区2型糖尿病患者血糖控制情况与肱踝脉搏波传导速度的相关性研究[J].北京大学学报(医学版),2015,47(3):431-436. 被引量:16

二级参考文献187

共引文献11954

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部