期刊文献+

一类图构形的特征多项式

The Characteristic Polynomials of a Class of Graphical Arrangements
下载PDF
导出
摘要 超平面构形是奇点理论的一个分支,它是一类具有非孤立奇点的超曲面。超平面构形是处在组合学、代数学、拓扑学、代数几何学等多个学科交汇处的一门年轻的学科,它的巨大魅力在于:能从组合学以及代数学等不同角度去描述它的拓扑不变量。特征多项式作为构形的一个组合不变量,在构形组合、代数、拓扑性质的研究中,起到非常重要的作用。本文利用图论中的顶点着色理论给出一类特殊图构形的特征多项式。 The arrangement of hyperplanes,which is a branch of singularity theory,is a hypersurface with non-isolated singularities. The arrangement of hyperplanes is a new interdisciplinary field which comes from combinatorics,algebra,topology,algebraic geometry and so on. The greatest charm of the theory of hyperplane arrangements is expressing topological invariants of the complement space in terms of combinatorics and algebra. The characteristic polynomials are combinatorial invariants for hyperplane arrangements,and play important roles in the studying of the properties of the aspects of combinatorics,algebra and topology. In this paper,the characteristic polynomials of a class of graphical arrangements are established by the chromatic theory of the vertices graphs.
作者 高瑞梅
出处 《长春理工大学学报(自然科学版)》 2015年第6期123-126,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(11501051) 吉林省教育厅"十二五"科学技术研究项目(吉教科合字[2015]第52号) 长春理工大学科技创新基金项目(XJJLG-2014-01)
关键词 超平面构形 图构形 特征多项式 hyperplane arrangement graphical arrangement characteristic polynomial
  • 相关文献

参考文献10

  • 1Orlik P,Terao H.Arrangements of hyperplanes[M].Grundlehren der Mathematischen Wissen- schaften,300,Springer-Verlag,Berlin,1992. 被引量:1
  • 2Terao H.Generalized exponents of a free arrange- ment of hyperplanes and Shephard-Todd-Brieskom formula[J].Invent.Math,1981(63):159-179. 被引量:1
  • 3Solomon L,Terao H.The double Coxeter arrange- ment[J].Comm.Math.Helv,1998(73):237-258. 被引量:1
  • 4Yoshinaga M.Characterization of a free arrange- ment and conjecture of Edelman and Reiner[J!.In- vent.Math,2004(157):449-454. 被引量:1
  • 5Abe T,Terao H,Wakefileld M.The characteristic polynomial of a multiarrangement[J].Adv.In Math,2007(215):825-838. 被引量:1
  • 6Gao R M,Pei D H,Terao H.The Shi arrange- ment of the type Di[J].Proc.Japan Acad.Ser.A,2012(88):41-45. 被引量:1
  • 7Abe T,Terao H.Simple-root bases for Shi ar- rangements[J].J.Algebra,2015(422):89-104. 被引量:1
  • 8Athanasiadis C.A.Characteristic polynomials of subspace arrangements and finite fields[J].Adv.In Math,1996(122):193-233. 被引量:1
  • 9Stanley R P.An introduction to hyperplane ar- rangements[Z].In Geometric Combinatorics,IAS/ Park City Math Ser,Amer Math Soc.Providence,RI,2007(13):389-496. 被引量:1
  • 10高瑞梅.超平面构形及其特征多项式[J].长春理工大学学报(自然科学版),2014,37(5):151-154. 被引量:1

二级参考文献8

  • 1Orlik P,Terao H. Arrangements of hyperplanes[M].Grundlehren der Mathematischen Wissenschaften, 300Springer-Verlag,Berlin, 1992. 被引量:1
  • 2Terao H. Generalized exponents of a free arrange-ment of hyperplanes and Shephard-Todd-Brieskomformula [J]. Invent Math, 1981,63: 159-179. 被引量:1
  • 3Solomon L,Terao H. The double Coxeter arrange-ment[J].Comm. Math Helv, 1998,73:237-258. 被引量:1
  • 4Yoshinaga M. Characterization of a free arrange-ment and conjecture of Edelman and Reiner [J]. In-vent. Math., 2004,157 ; 449-454. 被引量:1
  • 5Abe T, Terao H, Wakefileld M. The characteristicpolynomial of a multiarrangement [ J ].Adv. In Math.,2007,215:825-838. 被引量:1
  • 6Suyama D, Terao H. The Shi arrangements andthe Bernoulli polynomials [Jj.Bull. London Math.Soc, 2012,44:563-570. 被引量:1
  • 7Gao R M, Pei D H, Terao H. The Shi arrange-ment of the type D-l[J].Proc. Japan Acad. Ser. A,2012,88:41-45. 被引量:1
  • 8Stanley R P. An introduction to hyperplane ar-rangements [Zj.InGeometric Combinatorics, IAS/ParkCity Math Ser,Amer Math Soc.Providence,RI,2007,13:389-496. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部