期刊文献+

超平面构形及其特征多项式 被引量:1

The Hyperplane Arrangements and Their Characteristic Polynomials
下载PDF
导出
摘要 一个超平面构形是有限维向量空间中的有限个仿射超平面的集合。可以用数学领域很多学科的方法来研究超平面构形,例如:组合学、代数学、代数几何学、拓扑学、群作用等等,构形的研究结果将这些学科中看似毫无联系的知识联系在一起。不通过特征多项式的计算,求出了一些特殊构形的特征多项式中含有的因式,并利用图论中的顶点着色理论得到编织构形及某些子构形的特征多项式。 An arrangement of hyperplanes is a finite set of affine hyperplanes in a finite dimensional vector space. We study arrangements with methods from combinatorics, algebra, algebraic geometry, topolopy and group actions. Their study reveals unexpected connections of these areas. We give the factors for the characteristic polynomials of some spe-cial arrangements by not calculating their characteristic polynomials,and obtain the characteristic polynomials of braid ar-rangement and its subarrangements by coloring the vertices of their corresponding graphs.
作者 高瑞梅
出处 《长春理工大学学报(自然科学版)》 2014年第5期151-154,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(11326078)
关键词 超平面构形 编织构形 区域的个数 特征多项式 hyperplane arrangements braid arrangement the number of regions characteristic polynomial
  • 相关文献

参考文献8

  • 1Orlik P,Terao H. Arrangements of hyperplanes[M].Grundlehren der Mathematischen Wissenschaften, 300Springer-Verlag,Berlin, 1992. 被引量:1
  • 2Terao H. Generalized exponents of a free arrange-ment of hyperplanes and Shephard-Todd-Brieskomformula [J]. Invent Math, 1981,63: 159-179. 被引量:1
  • 3Solomon L,Terao H. The double Coxeter arrange-ment[J].Comm. Math Helv, 1998,73:237-258. 被引量:1
  • 4Yoshinaga M. Characterization of a free arrange-ment and conjecture of Edelman and Reiner [J]. In-vent. Math., 2004,157 ; 449-454. 被引量:1
  • 5Abe T, Terao H, Wakefileld M. The characteristicpolynomial of a multiarrangement [ J ].Adv. In Math.,2007,215:825-838. 被引量:1
  • 6Suyama D, Terao H. The Shi arrangements andthe Bernoulli polynomials [Jj.Bull. London Math.Soc, 2012,44:563-570. 被引量:1
  • 7Gao R M, Pei D H, Terao H. The Shi arrange-ment of the type D-l[J].Proc. Japan Acad. Ser. A,2012,88:41-45. 被引量:1
  • 8Stanley R P. An introduction to hyperplane ar-rangements [Zj.InGeometric Combinatorics, IAS/ParkCity Math Ser,Amer Math Soc.Providence,RI,2007,13:389-496. 被引量:1

同被引文献9

  • 1Orlik P,Terao H.Arrangements of hyperplanes[M].Grundlehren der Mathematischen Wissen- schaften,300,Springer-Verlag,Berlin,1992. 被引量:1
  • 2Terao H.Generalized exponents of a free arrange- ment of hyperplanes and Shephard-Todd-Brieskom formula[J].Invent.Math,1981(63):159-179. 被引量:1
  • 3Solomon L,Terao H.The double Coxeter arrange- ment[J].Comm.Math.Helv,1998(73):237-258. 被引量:1
  • 4Yoshinaga M.Characterization of a free arrange- ment and conjecture of Edelman and Reiner[J!.In- vent.Math,2004(157):449-454. 被引量:1
  • 5Abe T,Terao H,Wakefileld M.The characteristic polynomial of a multiarrangement[J].Adv.In Math,2007(215):825-838. 被引量:1
  • 6Gao R M,Pei D H,Terao H.The Shi arrange- ment of the type Di[J].Proc.Japan Acad.Ser.A,2012(88):41-45. 被引量:1
  • 7Abe T,Terao H.Simple-root bases for Shi ar- rangements[J].J.Algebra,2015(422):89-104. 被引量:1
  • 8Athanasiadis C.A.Characteristic polynomials of subspace arrangements and finite fields[J].Adv.In Math,1996(122):193-233. 被引量:1
  • 9Stanley R P.An introduction to hyperplane ar- rangements[Z].In Geometric Combinatorics,IAS/ Park City Math Ser,Amer Math Soc.Providence,RI,2007(13):389-496. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部