期刊文献+

基于支持向量机的汽车转向与换道行为识别 被引量:11

Vehicle steering and lane-changing behavior recognition based on a support vector machine
原文传递
导出
摘要 汽车驾驶行为是影响燃油消耗和安全驾驶的重要因素,驾驶行为识别是对汽车安全驾驶和节能进行优化的基础。该文针对汽车转向和换道行为,通过加装汽车转向盘转角传感器,结合车载总线通信技术获取汽车行驶状态信息,基于汽车转向运动学推导车辆行驶状态与汽车行驶轨迹之间的映射关系,进一步建立汽车行驶方向向量模型,提出以车身轴线转角和最大转向盘转角为特征量的支持向量机线性分类器,并运用Lagrange数乘法和二次规划算法求解该最优分类问题。通过设计实车实验验证了该方法的有效性。实验结果表明:该方法识别汽车的转向与换道驾驶行为的准确度达98%以上。该技术可用于汽车行驶安全预警与控制系统,提升行驶安全。 Driving behavior plays an important role in fuel consumption and safe driving. Thus, driving behavior recognition can im- prove driving safety and optimize energy use. This study presents a steering and lane-changing behavior recognition system based on the vehicle status obtained from a steering wheel angle sensor. A support vector machine linear classifier is then used to analyze the vehi- cle body transfer angle and maximum steering angle given by a moving direction vector model. Lagrange number multiplication and quadratic programming are used in an optimal classifier for recogniz ing steering and lane-changing behavior. Real vehicle tests show that this methodology has 98% accuracy for steering and lane changing behavior recognition. This system can be integrated into a warning and control system to improve driving safety.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第10期1093-1097,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目(2012AA111901) 国家留学基金项目(201406215015) 清华大学汽车安全与节能国家重点实验室开放基金项目(KF14142)
关键词 驾驶行为 行驶方向向量 支持向量机 最优分类 driving behavior moving direction vector support vector machine optimal classification
  • 相关文献

参考文献2

二级参考文献23

  • 1王玉海,宋健,李兴坤.基于模糊推理的驾驶员意图识别研究[J].公路交通科技,2005,22(12):113-118. 被引量:32
  • 2宗长富,刘凯.汽车线控驱动技术的发展[J].汽车技术,2006(3):1-5. 被引量:28
  • 3Lin Y, Tang P, Zhang W J, et al. Artificial Neural Network Mod- eling of Driver Handling Behavior in a Driver-System[ J]. International Journal of Vehicle Design ,2005,37 ( 1 ) 24 - 45. 被引量:1
  • 4Xi Z, Levinson D. Modeling Intersection Driving Behaviors : A Hidden Markov Model Approach-1 [ J ]. Transportation Research Record : Journal of the Transportation Research Board ,2006,1980 : 16 - 23. 被引量:1
  • 5Alex P, Andrew L. Modeling and Prediction of Human Behavior [ J ]. Neural Computation, 1999,11:229 - 242. 被引量:1
  • 6Pongsathorn R, Takuya M, Masao N. Direct Yaw Moment Control System Based on Driver Behavior Recognition ~ J ]. Vehicle System Dynamics ,2008,46 (supply) :911 - 921. 被引量:1
  • 7Kuge N, Yamamura T, Shimoyama O. A Driver Behaviour Recognition Method Based on a Driver Model Framework [ C ]. SAE Paper 2000 - 01 - 0349. 被引量:1
  • 8Takano W, Matsushita A, Iwao K, et al. Recognition of Human Driving Behaviours Based on Stochastic Symbolization of Time Series Signal[ C ]. Proc. of the 2008 IEEE IROS, Nice, France, 2008. 被引量:1
  • 9Kishimoto Y, Oguri K. A Modeling Method for Predicting Driving Behaviour Concerning with Driver's Past Movements [C]. Proc. of the 2008 IEEE ICVES, Ohio, USA,2008. 被引量:1
  • 10Meng X N, Lee K K, Xu Y S. Human Driving Behaviour Recognition Based on Hidden Markov Models [ C ]. Proc. of the 2006 IEEE ROBIO, Kunming,2006. 被引量:1

共引文献54

同被引文献77

引证文献11

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部