期刊文献+

改进稀疏表示的维吾尔族人脸识别算法 被引量:2

Improved Uyghur face recognition algorithm for sparse representation
下载PDF
导出
摘要 针对非均匀光照干扰维吾尔族人脸识别效果的问题,通过对传统稀疏表示方法及对维吾尔族人脸图像中存在的复杂光照问题的研究,提出了基于稀疏表示与偏微分方程组合来改善Retinex算法的维吾尔族人脸辨析方法。该方法首先由偏微分方程的方法改善Retinex,可以有效地减少光晕现象在反射系数图中,进而取得原子库在光照不变的情况,然后利用稀疏表示达到维吾尔族人脸在非均匀光照下的识别。通过实验表明,该方法有效提高了稀疏表示方法在处理复杂光照维吾尔族人脸图像时的识别效果,达到了鲁棒性强、识别率高的目标。 Aiming at the problems of Uyghur face recognition effect of non- uniform illumination jamming, through the research of sparse representation of traditional methods and Uyghur face complex lighting problems, this paper proposed the method of Uyghur face analysis based on sparse representation combined with partial differential equations to improve Retinex algorithm. The methods improve the Retinex method by partial differential equations, can effectively reduce the Halo phenomenon in reflection coefficient di-agram, and get the atoms to light does not change. Then sparse representations is used to realize Uyghur people face recognition in non- uniform lighting. Experiments show that this method an effectively improve the sparse representation method in dealing with complex lighting Uyghur face image recognition, and achieve robustness and high goals.
出处 《电子技术应用》 北大核心 2016年第2期17-20,24,共5页 Application of Electronic Technique
基金 国家自然科学基金(61462082)
关键词 非均匀光照 维吾尔族人脸 稀疏表示 偏微分方程 non-uniform illumination Uyghur face sparse representation partial differential equation
  • 相关文献

参考文献10

二级参考文献139

  • 1刘嘉勇,袁新峰.一种基于色阶偏差的皮肤检测技术研究[J].四川大学学报(工程科学版),2005,37(4):95-99. 被引量:3
  • 2SonkaM,HlavacV,BoyleR.图像处理、分析与机器视觉[M].第3版.艾海舟,苏延超,译.北京:清华大学出版社,2011. 被引量:4
  • 3Li Xiaoh, Ruan Qiuqi, Ruan Chengxiong. Facial expression recognition with local Gabor filters[ C ]//2010 IEEE 10th International Conference on Signal Processing ( ICSP 2010) ,Oct 24,2010 - Oct 28,2010. Bei- jing,China:1013 - 1016. 被引量:1
  • 4Liu Xiaoshan, Du Minghui, Jin Lianwen. Face features extraction based on multi-scale LBP[ C]//2010 2nd International Conference on Signal Processing Systems ( ICSPS ), July 5 - 7,2010. Dalian, China: 438 -441. 被引量:1
  • 5Chen Juanjuan, Zhao Zheng, Sun Han, et al. Facial expression recogni- tion based on PCA reconstruction[ C]//2010 5th International Confer- ence on Computer Science and Education ( ICCSE ), 24 - 27 Aug 2010. Hefei, Anhui : 195 - 198. 被引量:1
  • 6Lv Yanpeng, Wang Shangfei. A spontaneous facial expression recogni- tion method using head motion and AAM features [ C ]//2010 Second World Congress on Nature and Biologically Inspired Computing, 15 -17 Dec 2010. Kitakyushu ,Japan :334 - 339. 被引量:1
  • 7Nayyar A Zaidi, David McG Squire. Local Adaptive SVM for Object Recognition [ C ]//2010 Digital Image Computing : Techniques and Ap- plications : 196 - 201. 被引量:1
  • 8Tae-Ki An, Moon-Hyun Kim. A New Diverse AdaBoost Classifier [C]//2010 International Conference on Artificial Intelligence and Computational Intelligence, 23 - 24 Oct 2010. Nanjing, China: 359 -363. 被引量:1
  • 9Chaiyasit Tanchotsriuon, Suphakant Phimoltares, Saranya Maneeroj. Fa- cial expression recognition using graph-based features and artificial neural networks[ C ]//2011 IEEE International Conference on Imaging Systems and Techniques(IST) :331 - 334. 被引量:1
  • 10Donoho D L, Tsaig Y. Extensions of compressed sensing [ J ]. Signal Processing,2006,86 ( 3 ) :533 - 548. 被引量:1

共引文献79

同被引文献20

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部