期刊文献+

CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM

CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
下载PDF
导出
摘要 In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme. In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2016年第1期124-138,共15页 数学物理学报(B辑英文版)
基金 in part supported by the Distinguished Young Scholars Fund of Xinjiang Province(2013711010) NCET-13-0988 the NSF of China(11271313,11271298,61163027,and 11362021)
关键词 nonlinear parabolic problem Crank-Nicolson scheme Newton method finiteelement method optimal error estimate nonlinear parabolic problem Crank-Nicolson scheme Newton method finiteelement method optimal error estimate
  • 相关文献

参考文献1

二级参考文献37

  • 1Temam R. Navier-Stokes Equations. Amsterdam: North-Holland, 1984. 被引量:1
  • 2Girault V, Raviart PA. Finite Element Method for Navier-Stokes Equations. Berlin: Springer-Verlag, 1986. 被引量:1
  • 3Brezzi F, Pitkranta J. On the stabilization of finite element approximations of the Stokes problems//Notes on Numerical Fluid Mechanics. Braunschweig: Viewg, 1984. 被引量:1
  • 4Hughes J, Franca L, Balesra M. A new finite element formulation for computational fluid dynamics: V. Circunventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Engrg, 1986, 59:85 -99. 被引量:1
  • 5Brezzi F, Douglas Jr. Stabilized mixed methods for the Stokes problem. Numer Math, 2002, 20:653- 677. 被引量:1
  • 6Franca L, Stenberg R. Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J Numer Anal, 1991, 28:1680-1697. 被引量:1
  • 7Hughes J, Franca L. A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all veloc- ity/pressure spaces. Comput Methods Appl Mech Engrg, 1987, 65:85-96. 被引量:1
  • 8Kechar N, Silvester D. Analysis of a locally stabilized mixed finite element method for the Stokes problem. Math Comp, 1992, 58:1-10. 被引量:1
  • 9Tobiska L, Verffirth R. Analysis of a streamline diffusion finite element method for the Stokes and Navier- Stokes equations. SIAM J Numer Anal, 1996, 58:107-127. 被引量:1
  • 10He Y, Li J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equation. Appl Numer Math, 2008, 58:1503- 1514. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部