期刊文献+

矩形网格抛物型问题的质量集中有限元方法 被引量:5

Lumped Mass Finite Element Method for Parabolic Problem on Rectangular Mesh
下载PDF
导出
摘要 就一类典型的抛物型问题——热传导方程,研究矩形网格上质量集中有限元方法的有关性质.首先给出了矩形单元上双线性有限元基函数的积分公式,在此基础上讨论质量集中有限元方法的误差估计.研究表明,矩形网格上的质量集中有限元方法具有与普通的有限元方法同等的逼近精度,但却具有更少的计算量,并且在一定条件下可以保持极值性质.最后给出了在矩形网格上质量集中有限元方法保持极值性质的剖分条件. The property of the lumped mass finite element method (LMFEM) on rectangular mesh is investigated to solve a typical parabolic problem, i. e. , the heat transfer equation. The integral formula of the bi-linear finite element basis function on the rectangular mesh is given to discuss the error estimation for LMFEM. It is found that LMFEM has the equivalent approximate accuracy to the standard finite element method on the rectangular mesh, while the former has less computational cost and can retain the maximum principle under certain conditions. Moreover, the partitioning conditions for retaining the maximum principle on rectangular mesh are given.
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第8期1204-1208,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(10771031)
关键词 质量集中有限元方法 抛物型问题 有限元方法 极值性质 热传导方程 lumped mass finite element method (LMFEM) parabolic problem finite element method maximum principle heat transfer equation
  • 相关文献

参考文献9

  • 1黄明游编著..发展方程数值计算方法[M].北京:科学出版社,2004:151.
  • 2张铁,林延平.非线性抛物型微积分方程质量集中有限元方法[J].高等学校计算数学学报,1990,12(4):342-354. 被引量:6
  • 3Thomee V. Galerkin finite element methods for parabolic problems[ M]. Berlin: Springer-Verlag, 1997 : 239 - 252. 被引量:1
  • 4Chen C M,Thomee V. The lumped mass finite element for a parabolic problem [ J ]. Journal of the Australian Mathematical Society : Series B, 1985,26 (3) - 329 - 354. 被引量:1
  • 5Fujii H. Some remarks on finite element analysis of time- dependent fidd problems[C]//Theory and Practice in Finite Element Structure Analysis. Tokyo: University of Tokyo Press, 1973:91 - 106. 被引量:1
  • 6Ushijima T. On the uniform convergence for the lumped mass approximation to the heat equation [ J ]. J Fac Sci Univ Tokyo, 1977,24:477 - 490. 被引量:1
  • 7Ushijima T. Error estimates for the lumped mass approximation of the heat equation[J]. Mere Numer Math, 1979,6:65- 82. 被引量:1
  • 8Nie Y Y, Thomee V. A lumped mass finite element method with quadrature for a nonlinear problem[J]. IMA Journal of Numerical Analysis, 1985(5) :371- 396. 被引量:1
  • 9Raviart P. The use of numerical integration in finite element methods for solving parabolic equations [ C ] // Topics in Numerical Analysis. New York: Academic Press, 1973:263 - 264. 被引量:1

二级参考文献2

  • 1Alessandra Lunardi,Eugenio Sinestrari. Fully nonlinear integrodifferential equations in general Banach space[J] 1985,Mathematische Zeitschrift(2):225~248 被引量:1
  • 2Jim Douglas,B. Frank Jones. Numerical methods for integro-differential equations of parabolic and hyperbolic types[J] 1962,Numerische Mathematik(1):96~102 被引量:1

共引文献5

同被引文献12

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部