期刊文献+

一种基于非参数特征分析的非参数人脸识别方法 被引量:1

A Face Recognition Algorithm Based on Kernel Non-parameter Feature Analysis
下载PDF
导出
摘要 由于非参数子空间分析的非参数方法(KNSA)的运算法则还是有一定的限制性:首先,该方法中的类内散步矩阵Sw还是和LDA一样,如此对识别结果就会有很大的影响.其次,该方法在计算类间散步矢量时,未考虑到不同的KNN点会产生不同的类间散射矩阵.本文提出了一种非参数特征分析的非线性(核)鉴别分析方法(KNFA),并在ORL和XM2VTS人脸库上验证了该方法在识别性能上优于KDA和KNSA方法. The Kernel Non-Parameter subspace analysis still has some limitations. Firstly, the walking matrix in the class is sinilarte the LDA and Sw, so it will affect the results of the identification.Secondly, this method can generate different class scatter matrix among different KNN points in the computation of the walk matrix of the kind.In order to solve these problems. A Kernel Non-Parameter Feature Analysis(KNFA) method is proposed.Experimantal results on ORL and XM2 VTS face datafaces show the performance of Kernel Non-Parameter Feature Analysis is obviously better than the Kernel Non-Parameter subspace analysis and Kernel Discriminant Analysis.
作者 徐晓
出处 《广东技术师范学院学报》 2016年第2期24-28,共5页 Journal of Guangdong Polytechnic Normal University
关键词 人脸识别技术 线性判别分析方法 模式识别 弹性图匹配 非参数特征分析的非线性(核)鉴别分析方法 Face Recognition Technology Linear Discriminant Analysis Pattern Recognition Elastic Bunch Graph Matching Kernel non-parameter feature analysis
  • 相关文献

参考文献17

  • 1田捷,杨鑫.生物特征识别技术理论与应用[M].北京:电子工业出版社,2004:183-203. 被引量:5
  • 2王映辉著..人脸识别 原理、方法与技术[M].北京:科学出版社,2010:320.
  • 3Bischel M and Pentland A. Human face recognition and face image set's topology [J]. CVGIP: Image Understanding, 1994,59(2):254-261. 被引量:1
  • 4Turk M and Pentland A. Eigenfaces for recognition [J].Cog- nitive Neuroscience, 1991,3(1):71-86. 被引量:1
  • 5P.N.Belhumer, J. Hespannha, D. Kriegman. Eigenfaces vs fisherfaces:Recognition using class specific linear projection [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,Special Issue on Face Recognition,1997,17 (7) : 711-720. 被引量:1
  • 6M lades,J C Vorbruggen, J Buhmann. istortion invariant object recognition in the dynamic link architecture [C]. IEEE Trans on omputers,1993,42(3):300-311. 被引量:1
  • 7P. Peuve, J. Atick. Local Feature Analysis: A General Statistical Theory for Object Representation [J]. Network: Computationin Neural Systems,1996,7(3),477-500. 被引量:1
  • 8D.L. Swets, J.Weng. Using discriminant eigenfeatures for image retrieval.lEEE Trans.Pattern Analysis and MachineIntelligence,1996,18(8):831-836. 被引量:1
  • 9Li Fen Chen, Hong Yuan Mark Liao, Ming Tat Ko, etc. A new LDA-based face recognition system which can solve the smalls ample size problem [J]. Patern Recognition,2000,33 (9):1713-1726. 被引量:1
  • 10Hua Yu, Jie Yang. A direct LDA algorithm for high- dimensional data with application to face recognition [J]. Pattern Recognition,2001,34(10):2067-2070. 被引量:1

共引文献4

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部