期刊文献+

粗糙集连续属性离散化通用模型及GASA方法 被引量:1

Universal model and GASA method for discretization of continuous attribute in rough sets
下载PDF
导出
摘要 在对典型的离散化方法分析的基础上,提出一种适用于粗糙集决策表的连续属性离散化处理的通用模型结构;对遗传算法的适应度线性尺度变换作改进,将模拟退火的思想引入遗传算法,提出基于遗传模拟退火算法(GASA)的数据离散化方法,并用UCI机器学习数据库中的Iris和Glass数据集进行验证.实验结果表明,离散化方法通用模型对数据的离散化过程可以有不同的性能要求,能够保证系统中的样本对决策属性的分辨关系.GASA离散化方法具有较好的离散化效果,为连续属性离散化提供一种新的思路. A universal model framework suitable for dealing with continuous attribute discretization of rough set decision table was presented,based on the analysis of typical discretization method.The genetic simulated annealing algorithm(GASA)-based data discretization method was proposed by modifying the transformation of linear scaling of fitness in GA and introducing the thought of SA into GA.The proposed method was applied to the Iris and Glass data sets in the UCI machine learning repository to verify its validity.The results of experiments showed that the universal model framework could set different performance requirements to the discretization process and guarantee the discernible relation of the sample to decision attributes in the system.The discretization method with genetic simulated annealing algorithm exhibited a better discretization result,providing a new idea for the discretization of continuous attribute.
作者 孟科
机构地区 西安陆军学院
出处 《兰州理工大学学报》 CAS 北大核心 2011年第1期91-94,共4页 Journal of Lanzhou University of Technology
关键词 粗糙集 离散化 遗传模拟退火算法 rough sets discretization genetic simulated annealing algorithm
  • 相关文献

参考文献12

  • 1王国胤..ROUGH集理论与知识获取[M],2001.
  • 2NGUYEN H S,SKOWRON A.Quantization of real values attributes,rough set and boolean reasoning approaches.[C] //Proc of the 2nd Joint Annual Conf on Information Science.NC:Wrightsville Beach,1995:34-37. 被引量:1
  • 3CHIMERGE K R.Discretization of numeric attributes[C] //pioc of the 10th National Conference on Artificial Intelligence.Boston:MIT Press,1992:123-128. 被引量:1
  • 4LIU H,SETIONO R.CHI2:Feature selection and discretization of numeric attributes[C] //Proc of the 7th IEEE International Conference on tools with AI.Washington DC:[s.n.].1995:388-391. 被引量:1
  • 5FAYYAD U M,IRANI K B.On the handling of continuous.valued attributes in descion tree generation[J].Machine Learning,1992(8):87-102. 被引量:1
  • 6SON N H,HOA N S,SKOWRON A.Searching for features defined by hyperplanes[C] //RAS Z W,MICHALEWICZ M.The 9th International Symposium on Methodologies for Intelligent Systems.Berlin:Springer-Verlag,1996:366-375. 被引量:1
  • 7苗夺谦.Rough Set理论中连续属性的离散化方法[J].自动化学报,2001,27(3):296-302. 被引量:139
  • 8赵荣泳,张浩,李翠玲,樊留群,王骏.粗糙集连续属性离散化模型研究与应用要点分析[J].计算机工程与应用,2005,41(8):40-42. 被引量:15
  • 9KITANO H.Empirical studies on the speed of convergence of the neural network training by genetic algorithms[C] //Proc of AAAI-90.Menlo Park:The AAAI Press,1990. 被引量:1
  • 10GOLDBERG D E.Genetic algorithms in search,optimization,and machine learning[M].New York:Addison-Wesley Publishing Company Inc,1989. 被引量:1

二级参考文献15

  • 1苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997.. 被引量:3
  • 2Wang Jue,J Comput Sci Technol,1998年,13卷,2期,189页 被引量:1
  • 3苗夺谦,博士论文,1997年 被引量:1
  • 4Hu X H,Int J Computational Intelligence,1995年,11卷,2期,323页 被引量:1
  • 5Tsumoto,Shusaku. Rough Set Methods and Applications[M].New York:Physica_Verlag, 2000. 被引量:1
  • 6Orlowska, Ewa. Incomplete Information: Rough Set Analysis[M].New York: Physica_Verlag, 1998. 被引量:1
  • 7Francis E H Taya,Lixiang Shen. Fault diagnosis based on Rough Set Theory[J].Engineering Applications of Artificial Iutelligence,2003;16:39-43. 被引量:1
  • 8F E H Tay,L Shen.Economic and ?nancial prediction using rough sets model[J].European Journal of Operational Research,2002; 141:641-659. 被引量:1
  • 9Slowinski R.RoughClassifica tion of HSV Patients. Intelligent Decision Support[M].Kluwer:Roman Slowinski, 1992:77-944. 被引量:1
  • 10Hu X H,Cercone N.Learning in relational databases:A rough set approach[J].Inter J of Computational Intelli-gence, 1995; 11 (2) :323-3385. 被引量:1

共引文献150

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部