期刊文献+

具有强开发能力的风驱动优化算法 被引量:13

Improved Wind Driven Optimization Algorithm with Strong Development Ability
下载PDF
导出
摘要 风驱动优化算法是一种新兴的基于群体的迭代启发式全局优化算法。针对风驱动优化算法易陷入局部最优值的问题,实现了5种带有不同变异策略的风驱动优化算法,这些变异策略分别是小波变异策略、混沌变异策略、非均匀变异策略、高斯变异策略以及柯西变异策略。应用不同变异策略的风驱动优化算法对不同维度的经典测试函数进行了仿真实验,并与粒子群优化算法进行了比较。实验结果表明,小波变异风驱动优化算法具有较强的开发能力,可有效跳出局部最优,其寻优速率、收敛精度及算法稳定性均优于粒子群优化算法、风驱动优化算法和其他改进算法。 The wind driven optimization(WDO)algorithm is a population-based iterative heuristic global optimization algorithm.However,in order to deal with the problem that WDO algorithm is easily trapped into local optima,we introduced five WDO algorithms based on different mutation strategies.They are wavelet mutation strategy,chaotic mutation strategy,non-uniform mutation strategy,Gaussian mutation strategy and Cauchy mutation strategy.Different WDO mutation strategies were used to implement simulation experiments for several typical test functions and compared with particle swarm optimization(PSO)algorithm.Experiments show that the WDO with wavelet mutation(WDOWM)algorithm has a strong developing ability,which has capability to jump out of the local optima.The WDOWM algorithm is superior to the PSO algorithm,WDO algorithm and other improved WDO algorithms in terms of convergence rate,convergence accuracy and stability.
出处 《计算机科学》 CSCD 北大核心 2016年第1期275-281,305,共8页 Computer Science
基金 国家自然科学基金项目(61401179)资助
关键词 风驱动优化算法 变异 全局优化 Wind driven optimization algorithm Mutation Global optimization
  • 相关文献

参考文献12

  • 1Bayraktar Z,Komurcu M,Werner D H. Wind Driven Optimiza- tion (WDO) :A novel nature-inspired optimization algorithm and its application to eleetromagneties[C]//2010 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE,2010:1-4. 被引量:1
  • 2Bayraktar Z, Komurcu M, Bossard J A, et al. The wind driven optimization technique and its application in electromagnetics [J]. IEEE Transactions on Antennas and Propagation, 2013,61 (5) : 2745-2757. 被引量:1
  • 3Bhandari A K, Singh V K, Kumar A, et al. Cuckoo search algo- rithm and wind driven optimization based study of satellite im- age segmentation for multilevel thresholding using Kapurs en- tropy[J]. Expert Systems with Applications, 2014,41 (7) : 3538- 3560. 被引量:1
  • 4Sun J, Wang X, Huang M, et al. A Cloud Resource Allocation Scheme Based on Microeconomics and Wind Driven Optimiza- tion[C]// 2013 8th China Grid Annual Conference (China Grid). IEEE, 2013 : 34-39. 被引量:1
  • 5王安龙,何建华,陈松,刘怀远.双心扰动量子粒子群优化算法研究[J].计算机工程,2014,40(7):193-196. 被引量:3
  • 6刘式适,刘式达..大气动力学 第2版[M].北京:北京大学出版社,2011.
  • 7Ling S H,Iu H H C, Chan K Y, et al. Hybrid Particle Swarm Optimization With Wavelet Mutation and Its Industrial Applica- tions[J]. IEEE Transactions on Systems, Man, and Cyberne- tics-part B: Cybernetics, 2008,38 (3) : 743- 763. 被引量:1
  • 8贾东立,张家树.基于混沌变异的小生境粒子群算法[J].控制与决策,2007,22(1):117-120. 被引量:50
  • 9朱红求,阳春华,桂卫华,李勇刚.一种带混沌变异的粒子群优化算法[J].计算机科学,2010,37(3):215-217. 被引量:26
  • 10赵新超,刘国莅,刘虎球,赵国帅.基于非均匀变异和多阶段扰动的粒子群优化算法[J].计算机学报,2014,37(9):2058-2070. 被引量:52

二级参考文献76

共引文献153

同被引文献101

引证文献13

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部